[1]余竞一,介万奇.弛豫半导体的表征与应用研究进展[J].中国材料进展,2018,(11):011-15.[doi:10.7502/j.issn.1674-3962.2018.11.02]
 YU Jingyi,JIE Wanqi.Research Progress on Characterization and Application of Relaxation Semiconductors[J].MATERIALS CHINA,2018,(11):011-15.[doi:10.7502/j.issn.1674-3962.2018.11.02]
点击复制

弛豫半导体的表征与应用研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2018年第11期
页码:
011-15
栏目:
特约研究论文
出版日期:
2018-11-30

文章信息/Info

Title:
Research Progress on Characterization and Application of Relaxation Semiconductors
作者:
余竞一介万奇
西北工业大学材料学院 辐射探测材料与器件工信部重点实验室

Author(s):
YU JingyiJIE Wanqi
Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology,
School of Materials Science and Engineering, Northwestern Polytechnical University

关键词:
弛豫半导体寿命半导体介电弛豫少子注入多子耗尽效应光生载流子分离双极性输运电流-电压测试辐射探测器
Keywords:
relaxation semiconductor lifetime semiconductor dielectric relaxation minority carrier injection majority carrier depletion photocarrier separation ambipolar transport currentvoltage test radiation detector
DOI:
10.7502/j.issn.1674-3962.2018.11.02
文献标志码:
A
摘要:
介电弛豫时间大于载流子寿命的半导体为弛豫半导体,反之为寿命半导体。因为介电弛豫时间正比于电阻率,所以弛豫半导体一般为高阻半导体,例如补偿半导体、非晶半导体或低温下的半导体。在弛豫半导体中,由于材料恢复电中性的过程慢于载流子浓度恢复质量作用定律的过程,所以必须考虑空间电荷,包括自由电荷和陷阱所带电荷,对载流子输运的影响。少子注入会导致弛豫半导体多子耗尽、寿命半导体多子增加;中性注入会导致弛豫半导体电子空穴分离、寿命半导体发生双极性输运。弛豫半导体的多子耗尽现象可用电流电压测试和交流响应测试进行表征,发现其电流电压特性由低电压下的扩展线性区和高电压下的超线性区构成,且受陷阱浓度影响。使用载流子动力学测试可直接观察到弛豫半导体中光注入电子和空穴的分离现象。弛豫半导体独特的电学性质在辐射探测器、抗辐照器件、光电导开关、温度传感器等领域有广阔的应用价值。
Abstract:
The relaxation semiconductor is a material whose dielectric relaxation time is larger than its carrier lifetime, which is contrary to the lifetime semiconductor. The dielectric relaxation time is proportional to the resistivity, therefore relaxation semiconductors are typically highresistivity materials such as compensated semiconductors, amorphous semiconductors and semiconductors at low temperatures. In the relaxation semiconductor, due to the process to recover charge neutrality is slower than the recovery of the mass action law, space charges including free and trapped ones determine carrier transport behaviors. In the relaxation semiconductor, minority carrier injection leads to majority carrier depletion and neutral injection leads to separation of injected electrons and holes, while in the lifetime semiconductor lead to majority carrier accumulation and ambipolar transport, respectively. The majority carrier depletion can be characterized by the currentvoltage test and the frequency response test. The currentvoltage curve of the relaxation semiconductor contains an extended linear regime at low voltages and a superlinear regime at higher voltages. In addition, the curve is affected by trap concentration. The separation of photocarriers can be directly observed by carrier dynamics tests. Unique properties of the relaxation semiconductor have great application prospects in radiation detectors, radiationhardness devices, photoconductive switches, thermal sensors, etc.
更新日期/Last Update: 2018-10-31