[1]杨浩永,张涛.结晶态二维聚合物界面辅助合成研究进展及展望[J].中国材料进展,2023,42(05):361-368.[doi:10.7502/j.issn.1674-3962.202208015]
 YANG Haoyong,ZHANG Tao.Progress and Perspectives on Interfacial Synthesis of Crystalline Two-Dimensional Polymers[J].MATERIALS CHINA,2023,42(05):361-368.[doi:10.7502/j.issn.1674-3962.202208015]
点击复制

结晶态二维聚合物界面辅助合成研究进展及展望()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第05期
页码:
361-368
栏目:
出版日期:
2023-05-30

文章信息/Info

Title:
Progress and Perspectives on Interfacial Synthesis of Crystalline Two-Dimensional Polymers
文章编号:
1674-3962(2023)05-0361-08
作者:
杨浩永张涛
中国科学院宁波材料技术与工程研究所,浙江 宁波 315200
Author(s):
YANG Haoyong ZHANG Tao
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315200, China
关键词:
二维聚合物结晶态界面合成进展展望
Keywords:
two-dimensional polymers crystalline interfacial synthesis progress perspectives
分类号:
TQ317
DOI:
10.7502/j.issn.1674-3962.202208015
摘要:
二维聚合物(two-dimensional pilymers, 2DPs)是一种新兴的结晶态二维有机材料,由独立的、单原子/单体厚度的平面网络组成,具有长程的有序结构。得益于二维聚合物单体的多样性以及连接结构的多样性,目前已研究出多种合成二维聚合物的策略。其中,界面合成策略可用于合成大尺寸的单层或者少层的结晶态二维聚合物,推动了电子、催化以及能量领域的发展。目前用于合成二维聚合物的界面主要包括:气液界面、液液界面、气固界面以及液固界面。简要总结了这4类界面辅助合成二维聚合物策略的进展,并讨论了界面辅助合成策略在新型CC键连接的二维共轭聚合物合成中的发展前景。随着二维聚合物的发展,利用不可逆反应合成CC键连接的全共轭聚合物引起了研究人员的广泛关注。目前合成的CC键连接二维聚合物多为粉末状,该形态限制了二维聚合物的应用。相比于粉末状产物,二维聚合物薄膜在多种应用中均具有独特的优势。得益于界面合成策略的多样性和可设计性,通过设计界面合成策略有望实现全共轭二维聚合物薄膜的合成,为开发高稳定性和高性能的二维聚合物薄膜奠定基础。
Abstract:
Two-dimensional polymers (2DPs) are emerging crystalline 2D organic material comprising free-standing, single-atom/monomer-thick, planar, and covalent networks with long-ranging structural order. Benefiting from the diversity of monomers and connection, several strategies have been developed to synthesis 2DPs. Among all the strategies, interfacial synthesis was applied to fabricate large scale single-or multi-layer crystalline 2DPs, which promoted the application of 2DPs in electric, catalyst and energy field. At present, the interfaces for the synthesize of two-dimensional polymers include gas-liquid interface, liquid-liquid interface, gas-solid interface, and liquid-solid interface. In this review, we summarize the development of interfacial synthesis strategy and present the trends regarding to the interfacial synthesis of CC based-conjugated 2DPs. With the development of 2DPs, the synthesis of CC bondlinked fully conjugated polymers using irreversible reactions has attracted extensive interest. Since most of the currently synthesized CC-linked 2DPs are in powder form, their morphology limits the application of 2DPs. Compared to powdered products, 2D polymer films offer unique advantages in a variety of applications. Thanks to the versatility and designability of interfacial synthesis strategies, the synthesis of fully conjugated 2D polymer films is expected to be achieved through synthetic design of interfacial synthesis strategies, laying the foundation for the development of highly stable and high performance 2D polymer films.

参考文献/References:

\[1\]SAKAMOTO J, VAN HEIJST J, LUKIN O, et al. Angewandte Chemie International Edition\[J\], 2009, 48(6): 1030-1069. \[2\]SERVALLI M, SCHLTER A D. Annual Review of Materials Research\[J\], 2017, 47(1): 361-389. \[3\]DONG R, ZHANG T, FENG X. Chemical Reviews\[J\], 2018, 118(13): 6189-6235. \[4\]ZHANG T, ZHANG P, LIAO Z, et al. Chinese Chemical Letters\[J\], 2021, 33(8): 3921-3924. \[5\]SHINDE D B, SHENG G, LI X, et al. Journal of the American Chemical Society\[J\], 2018, 140(43): 14342-14349. \[6\]DONG R, PFEFFERMANN M, LIANG H, et al. Angewandte Chemie International Edition\[J\], 2015, 54(41): 12058-12063. \[7\]WANG Z, ZHANG Z, QI H, et al. Nature Synthesis\[J\], 2022, 1(1): 69-76. \[8\]MAKIURA R, MOTOYAMA S, UMEMURA Y, et al. Nature Materials\[J\], 2010, 9(7): 565-571. \[9\]MURRAY D J, PATTERSON D D, PAYAMYAR P, et al. Journal of the American Chemical Society\[J\], 2015, 137(10): 3450-3453. \[10\]SAHABUDEEN H, QI H, GLATZ B A, et al. Nature Communications\[J\], 2016, 7: 13461. \[11\]LIU K, LI J, QI H, et al. Angewandte Chemie International Edition\[J\], 2021, 60(25): 13859-13864. \[12\]ZHANG T, QI H, LIAO Z, et al. Nature Communications\[J\], 2019, 10(1): 4225. \[13\]LIU K, QI H, DONG R, et al. Nature Chemistry\[J\], 2019, 11(11): 994-1000. \[14\]SAHABUDEEN H, QI H, BALLABIO M, et al. Angewandte Chemie International Edition\[J\], 2020, 59(15): 6028-6036. \[15\]OU Z, LIANG B, LIANG Z, et al. Journal of the American Chemical Society\[J\], 2022, 144(7): 3233-3241. \[16\]ZHOU Y, JIN Y, SHEN Y, et al. Journal of Leather Science and Engineering\[J\], 2021, 3(1): 23. \[17\]REN L, TANG Z, QIANG T, et al. Journal of Leather Science and Engineering\[J\], 2021, 3(1): 7. \[18\]PARK S, LIAO Z, IBARLUCEA B, et al. Angewandte Chemie International Edition\[J\], 2020, 59(21): 8218-8224. \[19\]TAN F, HAN S, PENG D, et al. Journal of the American Chemical Society\[J\], 2021,143(10): 3927-3933. \[20\]ZHANG Z, BHAURIYAL P, SAHABUDEEN H, et al. Nature Communications\[J\], 2022, 13(1): 3935. \[21\]QI H, SAHABUDEEN H, LIANG B, et al. Science advances\[J\], 2020, 6(33): eabb5976. \[22\]LIANG B, ZHANG Y, LEIST C, et al. Nature Communications\[J\], 2022, 13(1): 3948. \[23\]MATSUMOTO M, DASARI R R, JI W, et al. Journal of the American Chemical Society\[J\], 2017, 139(14): 4999-5002. \[24\]MATSUMOTO M, VALENTINO L, STIEHL G M, et al. Chem\[J\], 2018, 4(2): 308-317. \[25\]DEY K, PAL M, ROUT K C, et al. Journal of the American Chemical Society\[J\], 2017, 139(37): 13083-13091. \[26\]YUAN J, YOU X, KHAN N A, et al. Nature Communications\[J\], 2022, 13(1): 3826. \[27\]RODENAS T, LUZ I, PRIETO G, et al. Nature Materials\[J\], 2015, 14(1): 48-55. \[28\]DONG R, HAN P, ARORA H, et al. Nature Materials\[J\], 2018, 17(11): 1027-1032. \[29\]ZHONG Y, CHENG B, PARK C, et al. Science\[J\], 2019, 366(6471): 1379-1384. \[30\]MACLEAN O, ROSEI F. Science\[J\], 2019, 366(6471): 1308-1309. \[31\]YANG J, TU B, ZHANG G, et al. Nature Nanotechnology\[J\], 2022, 17: 622-628. \[32\]LAFFERENTZ L, EBERHARDT V, DRI C, et al. Nature Chemistry\[J\], 2012, 4(3): 215-220. \[33\]LIU W, LUO X, BAO Y, et.al. Nature Chemistry\[J\], 2017, 9(6): 563-570. \[34\]GALEOTTI G, MARCHI F, HAMZEHPOOR E, et al. Nature Materials\[J\], 2020, 19(8): 874-880. \[35\]GRILL L, HECHT S. Nature Chemistry\[J\], 2020, 12(2): 115-130. \[36\]COLSON J W, WOLL A R, MUKHERJEE A, et al. Science\[J\], 2011, 332(6026): 228-231. \[37\]LIU L, YIN L, CHENG D, et al. Angewandte Chemie International Edition\[J\], 2021, 60(27): 14875-14880. \[38\]LIU Y, WEI Y, LIU M, et al. Advanced Materials\[J\], 2021, 33: 2007741. \[39\]FAN C, WU H, GUAN J, et al. Angewandte Chemie International Edition\[J\], 2021, 60(33): 202102965. \[40\]KHAN N A, ZHANG R, WU H, et al. Journal of the American Chemical Society\[J\], 2020, 142(31): 13450-13458. \[41\]MEDINA D D, ROTTER J M, HU Y, et al. Journal of the American Chemical Society\[J\], 2015, 137(3): 1016-1019. \[42\]KHAN N A, ZHANG R, WANG X, et al. Nature Communications\[J\], 2022, 13(1): 3169. \[43\]LV Y, LI Y, ZHANG G, et al. CCS Chemistry\[J\], 2021: 4:(5): 1519-1525. \[44\]LI C, WANG Y, ZOU Y, et al. Angewandte Chemie International Edition\[J\], 2020, 59(24): 9403-9407. \[45\]ZHOU D, TAN X, WU H, et al. Angewandte Chemie International Edition\[J\], 2019, 58(5): 1376-1381. \[46\]WANG K, YANG H, LIAO Z, et al. Journal of the American Chemical Society\[J\], 2023, 145(9): 5203-5210. \[47\]YAN H, KOU Z, LI S, et al. Small\[J\], 2023: 2207972. \[48\]ACHARJYA A, PACHFULE P, ROESER J, et al. Angewandte Chemie International Edition\[J\], 2019, 58(42): 14865-14870. \[49\]LYU H, DIERCKS C S, ZHU C, et al. Journal of the American Chemical Society\[J\], 2019, 141(17): 6848-6852. \[50\]LI S, MA R, XU S, et al. Journal of the American Chemical Society\[J\], 2022, 144(30): 13953-13960.

备注/Memo

备注/Memo:
收稿日期: 2022-08-15  修回日期: 2022-12-30 基金项目: 浙江省杰出青年基金资助项目(LR21E030001); 国家 自然科学基金资助项目(52003279)
更新日期/Last Update: 2023-05-06