[1]姜爽,贾楠,Peng Lin Ru.金属层状复合材料的力学行为及微观变形机理[J].中国材料进展,2024,43(01):024-34.[doi:10.7502/j.issn.1674-3962.202308028]
 JIANG Shuang,JIA Nan,PENG Lin Ru.Mechanical Behavior and Deformation Micro-Mechanisms of Laminated Metallic Composites[J].MATERIALS CHINA,2024,43(01):024-34.[doi:10.7502/j.issn.1674-3962.202308028]
点击复制

金属层状复合材料的力学行为及微观变形机理()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第01期
页码:
024-34
栏目:
出版日期:
2024-01-25

文章信息/Info

Title:
Mechanical Behavior and Deformation Micro-Mechanisms of Laminated Metallic Composites
文章编号:
1674-3962(2024)01-0024-11
作者:
姜爽贾楠Peng Lin Ru
1. 东北大学 材料电磁过程研究教育部重点实验室,辽宁 沈阳 1108192. 东北大学材料科学与工程学院 材料各向异性与织构教育部重点实验室,辽宁 沈阳 1108193. 林雪平大学工程材料系,瑞典 林雪平 58183
Author(s):
JIANG Shuang JIA Nan PENG Lin Ru
1. Key Laboratory of Electromagnetic Processing of Materials of Ministry of Education,Northeastern University, Shenyang 110819, China2. Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, School of Material Science and Engineering, Northeastern University, Shenyang 110819, China3.Division of Engineering Materials, Link-ping University, Link-ping 58183, Sweden
关键词:
金属层状复合材料塑性变形微观力学行为变形机制异质界面强韧化机制
Keywords:
laminated metallic composites plastic deformation micro-mechanical behavior deformation mechanisms hetero-phase interfaces strengthening/toughening mechanisms
分类号:
TB383
DOI:
10.7502/j.issn.1674-3962.202308028
文献标志码:
A
摘要:
金属层状复合材料作为一种典型的非均质材料,通过调控其内部的多尺度微结构特性,可以实现金属结构材料强度-韧性的协同提升,在高端先进制造领域具有潜在的应用前景。金属层状复合材料的宏观力学性能显著依赖于各组元层的性能、厚度和异质界面的结构特性。变形过程中材料内部的微观应力/应变在异质界面处的协调特性对组元金属的形变微观机制产生重要影响,进而影响复合材料整体的性能。因此,探索金属层状复合材料的“微观结构-力学行为-变形机制-宏观力学性能”的内在关联并揭示其对应的微观形变机理,对设计具有优异综合力学性能的金属层状复合材料有重要的理论指导意义和实际应用价值。聚焦于晶态金属层状复合材料的微观力学行为及变形机理,介绍了其力学行为的尺寸与界面效应,着重讨论了室温下材料的微观形变物理过程,阐明了非均匀金属层状复合体强韧化的机理。最后,对金属层状复合材料力学行为的研究进行了简要展望。
Abstract:
Laminated metallic composites (LMCs), designed based on the concept of heterostructured materials, can realize the synergistic improvement of strength and ductility for metallic structural materials by adjusting their internal multiscale microstructure characteristics, and have potential application prospects in the advanced manufacturing fields. The macroscopic mechanical properties of LMCs strongly depend on the intrinsic properties and layer thickness of individual constituents as well as the characteristics of heterophase interfaces. During the deformation process, the microscopic stress/strain accommodation characteristics at the heterophase interfaces play a crucial role in the deformation micro-mechanisms of constituent metals, thereby influencing the global performance of the LMCs. Therefore, exploring the internal correlation of “microstructure-mechanical behavior-deformation mechanisms-mechanical properties” of LMCs and revealing the corresponding microscopic mechanisms have important theoretical guiding significance and practical application value for designing LMCs with excellent comprehensive mechanical properties. This paper focuses on the micro-mechanical behaviors and deformation mechanisms of crystalline LMCs, introduces the size and interface effects on the mechanical behaviors. Especially, the micro-mechanical behaviors at room temperature are discussed, which sheds light on the strengthening and toughening mechanisms of heterogeneous LMCs. Finally, a brief prospect on the mechanical behavior research of LMCs in the future is given.

参考文献/References:

\[1\]MEYERS M A, MISHRA A, BENSON D J. Progress in Materials Science\[J\], 2006, 51(4): 427-556. \[2\]VALIEV R Z. Microstructures\[J\], 2023, 3: 2023004. \[3\]ASHBY M F, BRCHET Y J M. Acta Materialia\[J\], 2003, 51(19): 5801-5821.\[4\]LU K. Science\[J\], 2010, 328(5976): 319-320. \[5\]ASHBY M. Scripta Materialia\[J\], 2013, 68(1): 4-7. \[6\]WEGST U G K, BAI H, SAIZ E, et al. Nature Materials\[J\], 2015, 14: 23-36. \[7\]WU X L, YANG M X, YUAN F P, et al. Proceedings of the National Academy of Sciences of the United States of America\[J\], 2015, 112(47): 14501-14505. \[8\]WU X L, ZHU Y T. Materials Research Letters\[J\], 2017, 5(8): 527-532. \[9\]KHALAJHEDAYATI A, PAN Z L, RUPERT T J. Nature Communications\[J\], 2016, 7: 10802. \[10\]MA E, WU X L. Nature Communications\[J\], 2019, 10: 5623. \[11\]YU Y S, HU B, GAO M L, et al. International Journal of Minerals, Metallurgy and Materials\[J\], 2021, 28: 816-825. \[12\]YIN Y, TAN Q Y, SUN Q, et al. Journal of Materials Science & Technology\[J\], 2022, 96: 113-125. \[13\]WANG T, ZHA M, DU C F, et al. Materials Research Letters\[J\], 2023, 11(3): 187-195. \[14\]郑思婷, 赵蕾, 郭强. 中国材料进展\[J\], 2022, 41(5): 371-382.ZHENG S T, ZHAO L, GUO Q. Materials China\[J\], 2022, 41(5): 371-382.\[15\]KIM J G, BAEK S M, LEE H H, et al. Acta Materialia\[J\], 2018, 147: 304-312. \[16\]CAO Z H, SUN W, MA Y J, et al. Acta Materialia\[J\], 2020, 195: 240-251. \[17\]ROHATGI A, HARACH D J, VECCHIO K S, et al. Acta Materialia\[J\], 2003, 51(10): 2933-2957. \[18\]LAUNEY M E, RITCHIE R O. Advanced Materials\[J\], 2009, 21(20): 2103-2110. \[19\]HANSEN B L, CARPENTER J S, SINTAY S D, et al. International Journal of Plasticity\[J\], 2013, 49: 71-84. \[20\]HAO S J, CUI L S, JIANG D Q, et al. Science\[J\], 2013, 339(6124): 1191-1194. \[21\]MA X L, HUANG C X, MOERING J, et al. Acta Materialia\[J\], 2016, 116: 43-52. \[22\]HE J Y, MA Y, YAN D S, et al. Materials Science and Engineering A\[J\], 2018, 726: 288-297. \[23\]SPEARING S M. Acta Materialia\[J\], 2000, 48(1): 179-196. \[24\]LIANG F, WANG Z X, LUO Y W, et al. Acta Materialia\[J\], 2021, 216: 117138. \[25\]PIRAMANAYAGAM S N. Journal of Applied Physics\[J\], 2007, 102(1): 011301. \[26\]CHEN P, ZHU M. Materials Today\[J\], 2008, 11(12): 36-43. \[27\]HOLMBERG K, MATTHEWS A, RONKAINEN H. Tribology International\[J\], 1998, 31(1-3): 107-120. \[28\]DEMKOWICZ M J, HOAGLAND R G, HIRTH J P. Physical Review Letters\[J\], 2008, 100(13): 136102. \[29\]WEI Q M, LI N, MARA N, et al. Acta Materialia\[J\], 2011, 59(16): 6331-6340. \[30\]DEMKOWICZ M J, MISRA A, CARO A. Current Opinion in Solid State and Materials Science\[J\], 2012, 16(3): 101-108. \[31\]BEYERLEIN I J, CARO A, DEMKOWICZ M J, et al. Materials Today\[J\], 2013, 16(11): 443-449. \[32\]CHEN Y, LIU Y, FU E G, et al. Acta Materialia\[J\], 2015, 84: 393-404. \[33\]LU Y Y, KOTOKA R, LIGDA J P, et al. Acta Materialia\[J\], 2014, 63: 216-231. \[34\]ZHANG J Y, ZHAO J T, LI X G, et al. Acta Materialia\[J\], 2018, 143: 55-66. \[35\]JIANG S, PENG LIN R, JIA N, et al. Journal of Materials Science & Technology\[J\], 2019, 35(6): 1165-1174. \[36\]OHSAKI S, KATO S, TSUJI N, et al. Acta Materialia\[J\], 2007, 55(8): 2885-2895. \[37\]VLLERS F T N, SPOLENAK R. Acta Materialia\[J\], 2015, 99: 213-227. \[38\]ZENG L F, GAO R, FANG Q F, et al. Acta Materialia\[J\], 2016, 110: 341-351. \[39\]LI X G, CAO L F, ZHANG J Y, et al. Acta Materialia\[J\], 2018, 151: 87-99. \[40\]ZHANG J Y, ZHANG X, WANG R H, et al. Acta Materialia\[J\], 2011, 59(19): 7368-7379. \[41\]CARPENTER J S, VOGEL S C, LEDONNE J E, et al. Acta Materialia\[J\], 2012, 60(4): 1576-1586. \[42\]AVALLONE J T, NIZOLEK T J, BALES B B, et al. Acta Materialia\[J\], 2019, 176: 189-198. \[43\]GAO R, JIN M M, HAN F, et al. Acta Materialia\[J\], 2020, 197: 212-223. \[44\]GUO Q Y, THOMPSON G B. Acta Materialia\[J\], 2018, 148: 63-71. \[45\]CALLISTI M, POLCAR T. Acta Materialia\[J\], 2017, 124: 247-260. \[46\]SAVAGE D J, BEYERLEIN I J, MARA N A, et al. International Journal of Plasticity\[J\], 2020, 125: 1-26. \[47\]ZHENG S J, WANG J, CARPENTER J S, et al. Acta Materialia\[J\], 2014, 79: 282-291. \[48\]MISRA A, HIRTH J P, HOAGLAND R G. Acta Materialia\[J\], 2005, 53(18): 4817-4824. \[49\]WANG J, MISRA A. Current Opinion in Solid State and Materials Science\[J\], 2011, 15(1): 20-28.\[50\]ZHANG J Y, WU K, ZHANG L Y, et al. International Journal of Plasticity\[J\], 2017, 96: 120-134. \[51\]ZHANG J Y, ZHANG X, LIU G, et al. Materials Science and Engineering A\[J\], 2011, 528(6): 2982-2987.\[52\]张金钰,张欣,牛佳佳,等. 金属学报\[J\],2011,47(10): 1348-1354. ZHANG J Y, ZHANG X,NIU J J, et al. Acta Metallurgica Sinica\[J\], 2011, 47(10): 1348-1354. \[53\]NIU J J, ZHANG J Y, LIU G, et al. Acta Materialia\[J\], 2012, 60(9): 3677-3689. \[54\]ZHANG J Y, LI J, LIANG X Q, et al. Scientific Reports\[J\], 2014, 4: 4205. \[55\]CHEN Y, LIU Y, SUN C, et al. Acta Materialia\[J\], 2012, 60(18): 6312-6321. \[56\]GUO W, JGLE E, YAO J H, et al. Acta Materialia\[J\], 2014, 80: 94-106. \[57\]CAO Z H, CAI Y P, SUN C, et al. International Journal of Plasticity\[J\], 2019, 113: 145-157. \[58\]HAM B, ZHANG X. Materials Science and Engineering A\[J\], 2011, 528(4/5): 2028-2033. \[59\]YANG G H, ZHAO B, GAO Y, et al. Surface and Coatings Technology\[J\], 2005, 191(1): 127-133. \[60\]ZHANG J Y, LEI S, LIU Y, et al. Acta Materialia\[J\], 2012, 60(4): 1610-1622. \[61\]ZHANG J Y, LEI S, NIU J, et al. Acta Materialia\[J\], 2012, 60(10): 4054-4064. \[62\]JIA N, RAABE D, ZHAO X. Acta Materialia\[J\], 2016, 111: 116-128. \[63\]CHEN T J, YUAN R, BEYERLEIN I J, et al. International Journal of Plasticity\[J\], 2020, 124: 247-260. \[64\]HUANG C X, WANG Y F, MA X L, et al. Materials Today\[J\], 2018, 21(7): 713-719. \[65\]WANG Y F, YANG M X, MA X L, et al. Materials Science and Engineering A\[J\], 2018, 727: 113-118. \[66\]JIANG S, PENG LIN R, MTHIS K, et al. Journal of Materials Science & Technology\[J\], 2022, 110: 260-268. \[67\]LHUISSIER P, INOUE J, KOSEKI T. Scripta Materialia\[J\], 2011, 64(10): 970-973. \[68\]HUANG M, XU C, FAN G H, et al. Acta Materialia\[J\], 2018, 153: 235-249. \[69\]YU T B, DU Y, FAN G H, et al. Acta Materialia\[J\], 2021, 202: 149-158. \[70\]LI D Y, FAN G H, HUANG X X, et al. Acta Materialia\[J\], 2021, 206: 116627. \[71\]WU X L, JIANG P, CHEN L, et al. Proceedings of the National Academy of Sciences of the United States of America\[J\], 2014, 111(20): 7197-7201. \[72\]KIM J G, BAE J W, PARK J M, et al. Scientific Reports\[J\], 2019, 9: 6829. \[73\]GU T, MEDY J R, KLOSEK V, et al. International Journal of Plasticity\[J\], 2019, 122: 1-30. \[74\]JIANG S, PENG LIN R, HEGEDS Z, et al. Acta Materialia\[J\], 2021, 205: 116546. \[75\]JIANG S, PENG LIN R, AN K, et al. Materials Science and Engineering A\[J\], 2022, 851: 143620. \[76\]JIANG S, PENG LIN R, ZHAO X, et al. Materials Research Letters\[J\], 2023, 11(2): 126-133. \[77\]AN X H, ZHU S M, CAO Y, et al. Applied Physics Letters\[J\], 2015, 107(1): 011901. \[78\]MIAO K S, HUANG M, XIA Y P, et al. Journal of Materials Science & Technology\[J\], 2022, 125: 231-237. \[79\]LIU S S, LIU H, CHEN X, et al. Journal of Materials Science & Technology\[J\], 2022, 113: 271-286. \[80\]WU H, FAN G H, HUANG M, et al. International Journal of Plasticity\[J\], 2017, 89: 96-109. \[81\]LIU Y, BUFFORD D, RIOS S, et al. Journal of Applied Physics\[J\], 2012, 111(7): 073526. \[82\]KNEZEVIC M, NIZOLEK T, ARDELJAN M, et al. International Journal of Plasticity\[J\], 2014, 57: 16-28. \[83\]CARPENTER J S, NIZOLEK T, MCCABE R J, et al. Acta Materialia\[J\], 2015, 92: 97-108. \[84\]JIA N, ROTERS F, EISENLOHR P, et al. Acta Materialia\[J\], 2013, 61(12): 4591-4606. \[85\]JIA N, RAABE D, ZHAO X. Acta Materialia\[J\], 2014, 76: 238-251. \[86\]LIU X M, JIA N, WANG X L, et al. Materials Transactions\[J\], 2016, 57(2): 119-126. \[87\]ZHU Y T, WU X L. Materials Research Letters\[J\], 2019, 7(10): 393-398. \[88\]ZHU Y T, AMEYAMA K, ANDERSON P M, et al. Materials Research Letters\[J\], 2021, 9(1): 1-31. \[89\]WANG Y F, HUANG C X, LI Y S, et al. International Journal of Plasticity\[J\], 2020, 124: 186-198.

备注/Memo

备注/Memo:
收稿日期:2023-08-29修回日期:2023-12-20基金项目:国家自然科学基金项目(51922026,52301138)第一作者:姜爽,女,1991年生,讲师通讯作者:贾楠,女,1981年生,教授,博士生导师,Email:jian@atm.neu.edu.cn
更新日期/Last Update: 2024-01-02