[1]高瑞泽,王亚强,张金钰,等.金属/高熵合金纳米多层膜的制备、微观结构及力学性能研究进展[J].中国材料进展,2024,43(01):012-23.[doi:10.7502/j.issn.1674-3962.202309017]
 GAO Ruize,WANG Yaqiang,ZHANG Jinyu,et al.Research Progress on the Preparation, Microstructure and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J].MATERIALS CHINA,2024,43(01):012-23.[doi:10.7502/j.issn.1674-3962.202309017]
点击复制

金属/高熵合金纳米多层膜的制备、微观结构及力学性能研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第01期
页码:
012-23
栏目:
出版日期:
2024-01-25

文章信息/Info

Title:
Research Progress on the Preparation, Microstructure and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers
文章编号:
1674-3962(2024)01-0012-12
作者:
高瑞泽王亚强张金钰吴凯刘刚孙军
西安交通大学材料科学与工程学院 金属材料强度国家重点实验室,陕西 西安 710049
Author(s):
GAO Ruize WANG Yaqiang ZHANG Jinyu WU Kai LIU Gang SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering,Xi’an Jiaotong University, Xi’an 710049, China
关键词:
金属纳米多层膜高熵合金微观组织结构力学性能硬度摩擦性能
Keywords:
metallic nanostructured multilayers high entropy alloys microstructuremechanical properties hardness tribological property
分类号:
TB383;TG174.44
DOI:
10.7502/j.issn.1674-3962.202309017
文献标志码:
A
摘要:
通过表面防护涂层技术制备综合力学性能与摩擦性能优异的涂层材料,对降低构件因碰撞摩擦磨损所引起的损伤失效问题十分重要。相较于单层膜结构防护涂层,金属纳米多层膜涂层材料由于其微观组织结构的独特性与可控性, 表现出优异的服役特性, 且其综合性能可通过结合新组元或界面调控得到进一步提高, 因此该类材料受到了广泛关注。新颖的成分设计理念使得高熵合金具有独特的四大效应,即高熵效应、晶格畸变效应、迟滞扩散效应和性能鸡尾酒效应,进而呈现出良好的综合性能。因此,在传统的双金属纳米多层膜结构材料中引入高熵合金组元,形成金属/高熵合金纳米多层膜,有望突破传统金属纳米多层膜的性能局限,极大地提高多层膜结构材料的力学性能。从功能基元序构的视角,围绕近几年金属/高熵合金纳米多层膜的相关研究,首先介绍了其制备方法和工艺原理,针对功能基元微观结构特征,从晶粒形貌、界面结构、组元成分等方面进行了阐释,在此基础上论述了其力学行为以及相应的内在机制,并提出了调控金属/高熵合金纳米多层膜力学性能的优化策略,最后对金属/高熵合金纳米多层膜的未来研究方向和面临的挑战进行展望。
Abstract:
The preparation of coating materials with excellent mechanical and friction properties through surface protective coating technology is important to reduce the damage failure of components caused by collision and friction wear.Compared with single-layer protective coatings, metallic nano-multilayer coatings have received extensive attention due to their unique and controllable microstructure, excellent service properties, and their comprehensive performance can be further improved by combining new components or interface modulation. High entropy alloys also have excellent properties due to their novel composition design and four major effects, including high mixture entropy, severe lattice distortion, sluggish diffusion, and cocktail effects.Therefore, the introduction of high entropy alloys into metallic nanostructured multilayers to form metal/high entropy alloy nanostructured multilayers may break through the performance shortcomings of traditional metallic nanostructured multilayers and greatly improve the mechanical properties. In this paper, the related researches on metal/high entropy alloy nanostructured multilayers in recent years are reviewed, from the perspective of functional units and ordered structure. This review firstly introduces the preparation methods and process principles. Secondly, this review elucidates the microstructure of functional units in terms of grain morphology, interfacial structure and component composition, and discusses the mechanical behavior and intrinsic mechanism, simultaneously proposing an optimization strategy for tuning the mechanical properties of metal/high entropy alloy nanostructured multilayers. Finally, the future research directions and challenges are prospected.

参考文献/References:

\[1\]HE C L, ZHANG J L, XIE L P, et al. Rare Metals\[J\], 2019, 38: 979-988.\[2\]ZHU X Y, LUO J T, ZENG F, et al. Thin Solid Films\[J\], 2011, 520(2): 818-823.\[3\]MARA N A, BHATTACHARYYA D, HOAGLAND R G, et al. Scripta Materialia\[J\], 2008, 58(10): 874-877.\[4\]PODGORNIK B, SEDLAEK M, ETINA BATI B, et al. Surface and Coatings Technology\[J\], 2023, 465: 129594.\[5\]KOEHLER J S. Physical Review B\[J\], 1970, 2(2): 547.\[6\]ABBUD L H, ALMASOUDY M M M, OMRAN S H, et al. Materials Today: Proceedings\[J\], 2023, 80: 2495-2500.\[7\]欧忠文, 徐滨士, 马世宁, 等. 机械工程学报\[J\], 2002, 38(6): 5-10.OU Z W, XU B S, MA S N, et al. Chinese Journal of Mechanical Engineering\[J\], 2002, 38(6): 5-10.\[8\]MISRA A, VERDIER M, LU Y C, et al. Scripta Materialia\[J\], 1998, 39(4-5): 555-560.\[9\]MISRA A, KRUG H. Advanced Engineering Materials\[J\], 2001, 3(4): 217-222.\[10\]EMBURY J D, HIRTH J P.Acta Metallurgica et Materialia\[J\], 1994, 42(6): 2051-2056.\[11\]CHU X, BARNETT S A.Journal of Applied Physics\[J\], 1995, 77(9): 4403-4411.\[12\]KATO M, MORI T, SCHWARTZ L H.Acta Metallurgica\[J\], 1980, 28(3): 285-290.\[13\]WEN S P, ZONG R L, ZENG F, et al.Journal of Materials Research\[J\], 2007, 22(12): 3423-3431.\[14\]WEN S P, ZONG R L, ZENG F, et al.Applied Surface Science\[J\], 2009, 255(8): 4558-4562.\[15\]WEN S P, ZENG F, PAN F, et al.Materials Science and Engineering A\[J\], 2009, 526(1-2): 166-170.\[16\]TRAN A S.Engineering Fracture Mechanics\[J\], 2020, 239: 107292.\[17\]LU L, HUANG C, PI W L, et al. Computational Materials Science\[J\], 2018, 143: 63-70.\[18\]张金钰, 屈启蒙, 王亚强, 等. 金属学报\[J\], 2022, 58(11): 1371-1384.ZHANG J Y, QU Q M, WANG Y Q, et al. Acta Metallurgica Sinica\[J\], 2022, 58(11): 1371-1384.\[19\]YEH J W, CHEN S K, LIN S J, et al.Advanced Engineering Materials\[J\], 2004, 6(5): 299-303.\[20\]谭雅琴, 王晓明, 朱胜, 等. 材料导报\[J\], 2020, 34(5): 5120-5126.TAN Y Q, WANG X M, ZHU S, et al. Materials Reports\[J\], 2020, 34(5): 5120-5126.\[21\]TSAI M H, YEH J W.Materials Research Letters\[J\], 2014, 2(3): 107-123.\[22\]YE Y F, WANG Q, LU J, et al.Materials Today\[J\], 2016, 19(6): 349-362.\[23\]VELASCO S C, CAVALEIRO A, CARVALHO S.Progress in Materials Science\[J\], 2016, 84: 158-191.\[24\]黄卓斌, 周青, 罗大微, 等. 表面技术\[J\], 2022, 51(9): 30-42.HUANG Z B, ZHOU Q, LUO D W, et al. Surface Technology\[J\], 2022, 51(9): 30-42.\[25\]YAN X H, LI J S, ZHANG W R, et al.Materials Chemistry and Physics\[J\], 2018, 210: 12-19.\[26\]CEMIN F, JIMENEZ M J M, LEIDENS L M, et al.Journal of Alloys and Compounds\[J\], 2020, 838: 155580-155591.\[27\]CEMIN F, de MELLO S R S, FIGUEROA C A, et al.Surface and Coatings Technology\[J\], 2021, 421: 127357.\[28\]CHENG C J, ZHANG X F, HACH M J R, et al. Nano Research\[J\], 2022, 15(6): 4873-4879.\[29\]LUO D, ZHOU Q, YE W, et al.ACS Applied Materials & Interfaces\[J\], 2021, 13(46): 55712-55725.\[30\]房晓彤. 高硬度(AlSiTiVCrNb)N高熵合金薄膜形成机制及其性能研究\[D\].西安:西安工业大学, 2021. FANG X T. Formation Mechanism and Properties of (AlSiTiVCrNb)N HEAs Films with High Hardness\[D\]. Xian: Xian University of Technology, 2021. \[31\]ZHANG Q, XU Y, ZHANG T, et al. Surface and Coatings Technology\[J\], 2018, 356: 1-10.\[32\]LUO P, GONG C Z, LI Y J, et al. Journal of Materials Engineering and Performance\[J\], 2022, 31(1): 230-239.\[33\]刘新院, 郝建军. 电镀与精饰\[J\], 2011, 33(1): 20-23.LIU X Y, HAO J J. Plating and Finishing\[J\], 2011, 33(1): 20-23.\[34\]CAI W J, SCHUH C A. Journal of Materials Research\[J\], 2014, 29(18): 2229-2239.\[35\]顾超, 朱宏喜, 任凤章, 等. 表面技术\[J\], 2011, 40(4): 4-7.GU C, ZHU H X, REN F Z, et al.Surface Technology\[J\], 2011, 40(4): 4-7.\[36\]ZHANG Y J, SU Y H, FAN Y Y. Materials Protection\[J\], 2007, 40(8): 53-58.\[37\]CUI P P, LI W, LIU P, et al. Surface and Coatings Technology\[J\], 2022, 433: 128091.\[38\]HU M, GAO X M, WENG L J, et al. Applied Surface Science\[J\], 2014, 313: 563-568.\[39\]ZHAO Y F, ZHANG J Y, WANG Y Q, et al. Science China Materials\[J\], 2020, 63(3): 444-452.\[40\]ZHAO Y F, ZHANG J Y, WANG Y Q, et al. Journal of Materials Science & Technology\[J\], 2021, 68: 16-29.\[41\]ZHAO Y F, ZHANG J Y, WANG Y Q, et al.Nanoscale\[J\], 2019, 11(23): 11340-11350.\[42\]SHAO W T, WU S K, YANG W, et al.Vacuum\[J\], 2023, 207: 111660.\[43\]RAO S I, HAZZLEDINE P M.Philosophical Magazine A\[J\], 2000, 80(9): 2011-2040.\[44\]张金钰, 刘刚, 孙军. 金属学报\[J\], 2014, 50(2): 169-182.ZHANG J Y, LIU G, SUN J. Acta Metallurgica Sinica\[J\], 2014, 50(2): 169-182.\[45\]ZHAO Y F, WANG Y Q, ZHANG J Y, et al. Science China Materials\[J\], 2023, 66(11): 4207-4219.\[46\]LI W, LIU P, ZHANG K, et al. Applied Surface Science\[J\], 2014, 317: 935-939.\[47\]ZHANG J Y, ZHANG P, ZHANG X, et al. Materials Science and Engineering A\[J\], 2012, 545: 118-122.\[48\]BANERJEE R, AHUJA R, FRASER H L. Physical Review Letters\[J\], 1996, 76(20): 3778.\[49\]BRAECKMAN B R, MISJK F, RADNCZI G, et al. Thin Solid Films\[J\], 2016, 616: 703-710.\[50\]YE F X, JIAO Z P, YAN S, et al. Vacuum\[J\], 2020, 174: 109178.\[51\]曾琪皓, 张松, 胥永刚, 等. 稀有金属材料与工程\[J\], 2022, 51(3): 1024-1030.ZENG Q H, ZHANG S, XU Y G, et al. Rare Metal Materials and Engineering\[J\]. 2022, 51(3): 1024-1030. \[52\]马明星, 王志新, 周家臣, 等. 机械工程学报\[J\], 2020, 56(10): 110-116.MA M X, WANG Z X, ZHOU J C, et al. Journal of Mechanical Engineering\[J\], 2020, 56(10): 110-116.\[53\]LIN D Y, ZHANG N N, HE B, et al. Journal of Thermal Spray Technology\[J\], 2017, 26: 2005-2012.\[54\]QIU X W, LIU C G.Journal of Alloys and Compounds\[J\], 2013, 553: 216-220.\[55\]张冲, 黄标, 戴品强. 中国表面工程\[J\], 2016, 29(1): 32-38.ZHANG C, HUANG B, DAI P Q. China Surface Engineering\[J\], 2016, 29(1): 32-38.\[56\]ZHAO Y M, ZHANG X M, QUAN H, et al.Journal of Alloys and Compounds\[J\], 2022, 895: 162709.\[57\]MISRA A, HIRTH J P, HOAGLAND R G.Acta Materialia\[J\], 2005, 53(18): 4817-4824.\[58\]罗大微, 周青, 叶雯婷, 等. 中国表面工程\[J\], 2021, 34(5): 161-168.LUO D W, ZHOU Q, YE W T,et al. China Surface Engineering\[J\], 2021, 34(5): 161-168.\[59\]ZHAO Y F, CHEN B, WANG Y Q, et al.Acta Materialia\[J\], 2023, 246: 118706.\[60\]ZHOU Q, HUANG P, LIU M B, et al. Journal of Alloys and Compounds\[J\], 2017, 698: 906-912.\[61\]SHEN Y, ANDERSON P M.Journal of the Mechanics and Physics of Solids\[J\], 2007, 55(5): 956-979.\[62\]HOAGLAND R G, KURTZ R J, HENAGER JR C H.Scripta Materialia\[J\], 2004, 50(6): 775-779.\[63\]WANG J, HOAGLAND R G, MISRA A.Applied Physics Letters\[J\], 2009, 94(13): 131910.\[64\]朱晓莹, 潘峰. 中国材料进展\[J\], 2011, 30(10): 1-13.ZHU X Y, PAN F. Materials China\[J\], 2011, 30(10): 1-13.\[65\]LIN F H, XIA Y Q, FENG X. Friction\[J\], 2021, 9: 774-788.\[66\]MULLIGAN C P, GALL D.Surface and Coatings Technology\[J\], 2005, 200(5-6): 1495-1500.\[67\]KANG X, YU S, YANG H L, et al. Friction\[J\], 2021, 9: 941-951.\[68\]CHEN Z.Journal of Tribology\[J\], 2019, 141(10): 104501-104503.\[69\]WU H, ZHANG S, WANG Z Y, et al.International Journal of Refractory Metals and Hard Materials\[J\], 2022, 102: 105721.\[70\]DENG G Y, TIEU A K, SU L H, et al. Wear\[J\], 2020, 460-461: 203440.\[71\]LIU E Y, ZHANG J H, CHEN S, et al. Ceramics International\[J\], 2021, 47(11): 15901-15909.\[72\]WANG W Z, PU J B, CAI Z B, et al. Vacuum\[J\], 2020, 176: 109332.\[73\]KUTSCHEJ K, MITTERER C, MULLIGAN C P, et al.Advanced Engineering Materials\[J\], 2006, 8(11): 1125-1129.\[74\]SHI P Y, YU Y, XIONG N N, et al. Tribology International\[J\], 2020, 151: 106470.\[75\]YU D, YU L H, ASEMPAH I, et al. Surface and Coatings Technology\[J\], 2020, 399: 126167.\[76\]FENG X C, LU C, JIA J H, et al. Tribology International\[J\], 2020, 141: 105898.\[77\]ENDRINO J L, NAINAPARAMPIL J J, KRZANOWSKI J E. Surface and Coatings Technology\[J\], 2002, 157(1): 95-101.\[78\]LIU E Y, BAI Y P, GAO Y M, et al. Tribology International\[J\], 2014, 80: 25-33.\[79\]郑林庆. 摩擦学原理\[M\]. 北京:高等教育出版社, 1994:371.ZHENG L Q. Principles of Tribology\[M\]. Beijing: Higher Education Press, 1994: 371.\[80\]ZHAO K, AGHABABAEI R.Journal of the Mechanics and Physics of Solids\[J\], 2020, 143: 104069.\[81\]张金钰, 张欣, 牛佳佳, 等. 金属学报\[J\], 2011, 47(10): 1348-1354.ZHANG J Y, ZHANG X, NIU J J, et al. Acta Metallurgica Sinica\[J\], 2011, 47(10): 1348-1354.\[82\]张欣, 张金钰, 刘刚, 等. 金属学报\[J\], 2011, 47(2): 246-250.ZHANG X, ZHANG J Y, LIU G,et al. Acta Metallurgica Sinica\[J\], 2011, 47(2): 246-250.

备注/Memo

备注/Memo:
收稿日期:2023-09-19修回日期:2023-11-22基金项目:国家自然科学基金项目(92163201,U2067219,52001247);陕西省青年创新团队科研计划项目(22JP042)第一作者:高瑞泽,男,2000年生,硕士研究生通讯作者:张金钰,男,1982年生,教授,博士生导师,Email:jinyuzhang1002@mail.xjtu.edu.cn
更新日期/Last Update: 2024-01-02