[1]刘宝玺,郑士建,林曾孟,等.多层金属复合材料的应变局部化延迟和抗断裂失稳机理[J].中国材料进展,2024,43(01):035-45.[doi:10.7502/j.issn.1674-3962.202311010]
 LIU Baoxi,ZHENG Shijian,LIN Zengmeng,et al.Strain Delocalization and Fracture Stability of Multilayered Metallic Composites[J].MATERIALS CHINA,2024,43(01):035-45.[doi:10.7502/j.issn.1674-3962.202311010]
点击复制

多层金属复合材料的应变局部化延迟和抗断裂失稳机理()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第01期
页码:
035-45
栏目:
出版日期:
2024-01-25

文章信息/Info

Title:
Strain Delocalization and Fracture Stability of Multilayered Metallic Composites
文章编号:
1674-3962(2024)01-0035-11
作者:
刘宝玺郑士建林曾孟殷福星
1. 河北工业大学材料科学与工程学院 天津市材料层状复合与界面控制重点实验室,天津 3001302. 广东省科学院 新材料研究所,广东 广州 510651
Author(s):
LIU BaoxiZHENG ShijianLIN ZengmengYIN Fuxing
1.Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China2. Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
关键词:
多层金属复合材料应变退局域化强韧化周期性颈缩隧道裂纹脱层断裂
Keywords:
multilayered metallic composites strain delocalization strengtheningtoughening mechanism periodic necking tunnel crack delamination fracture
分类号:
TB383
DOI:
10.7502/j.issn.1674-3962.202311010
文献标志码:
A
摘要:
多层金属复合材料在航天航空、汽车、船舶、核能电力领域中起着非常重要的作用。相比于传统单一金属,多层金属复合材料具有超高的塑性变形能力和断裂韧性。综述了多层金属复合材料在塑性变形过程中的应变局域化延迟和抗断裂失稳的特征和机理,归纳出周期性颈缩、脱层断裂、隧道裂纹、弥散剪切带对抑制多层金属复合材料塑性失稳的作用机理,并阐明脱层断裂、裂纹分叉、隧道裂纹对多层金属复合材料的增韧机理,和对韧脆转变行为的作用规律,可为金属材料强韧化提供新的设计思路和技术支撑。
Abstract:
Multilayered metallic composites play a very important role in the aerospace,automobile, shipbuilding and nuclear power fields. Compared with traditional monolithic metals, multilayered metallic composites have superhigh plastic deformation capability and fracture toughness. This paper provides a review on strain delocalization and fracture instability delaying characteristics and mechanisms, and summarizes the effect of periodic multiple necking,delamination cracks, multiple tunnel cracks and dispersed shear bands on suppressing plastic instability of multilayered metallic composites.Meanwhile, this review elucidates the toughening mechanism and ductile-brittle transition behavior of multilayered metallic composites by delamination cracks, crack bifurcation and tunnel crack modes, which can provide the new design idea and technique support for the strengtheningtoughening of metals.

参考文献/References:

\[1\]JIANG S W,WANG H,WU Y, et al.Nature\[J\],2017,544:460-464.\[2\]MA E,ZHU T. Materials Today\[J\], 2017, 20(6): 323-331.\[3\]韩卫忠, 卢岩, 张雨衡. 金属学报\[J\], 2023,59(3): 335-348.HAN W Z,LU Y,ZHANG Y H. Acta Metallurgica Sinica\[J\], 2023,59(3): 335-348.\[4\]KIMURA Y,INOUE T,YIN F X,et al.Science\[J\],2008,320(5879): 1057-1060.\[5\]翁余庆. 超细晶钢: 钢的组织细化理论与控制技术\[M\]. 北京:冶金工业出版社,2003.WENG Q Y. UltraFine Grained Steels\[M\]. Beijing:Metallurgical Industry Press,2003.\[6\]LU K. Science\[J\],2010,328(5976): 319-320.\[7\]HUANG L J,GENG L,PENG H X. Progress in Materials Science\[J\],2015,71: 93-168.\[8\]CHENG Z,ZHOU H F,LU Q H,et al.Science\[J\],2018,362(6414): 1-8.\[9\]LIU B X,HUANG L J,RONG X D, et al.Composites Science and Technology\[J\],2016,126: 94-105.\[10\]李赞, 张荻.中国材料进展\[J\], 2023,42(8): 605-613.LI Z, ZHANG D. Materials China\[J\], 2023,42(8): 605-613.\[11\]郑思婷, 赵蕾, 郭强.中国材料进展\[J\], 2022, 41(5): 371-382.ZHENG S T, ZHAO L, GUO Q. Materials China\[J\],2022, 41(5): 371-382.\[12\]REIBOLD M,PAUFLER P,LEVIN A A,et al. Nature\[J\],2006,444: 286.\[13\]YIN F X,LI L,TANAKA Y,et al. Materials Science and Technology\[J\],2012, 28(7): 783-787.\[14\]KOSEKI T,INOUE J,NAMBU S,et al. Materials Transaction\[J\],2014,55(2): 227-237.\[15\]WADSWORTH J,SHERBY O D. Progress in Materials Science\[J\],1980,25(1): 35-68.\[16\]LIU B X,FAN K Y,YIN F X,et al. Materials Science and Engineering A\[J\], 2020,774: 138954.\[17\]WU H,FAN G H. Progress in Materials Science\[J\],2020,113: 100675.\[18\]INAL K,WU P D,NEALE K W. International Journal of Solids and Structures\[J\],2002,39(4): 983-1002.\[19\]CHEN Y,DAI L H. Journal of Materials Science & Technology\[J\],2014,30(6): 616-621.\[20\]METZGER D R,DUAN X,JAIN M,et al. Mechanics of Materials\[J\],2006,38(11): 1026-1038.\[21\]ZHU Y T,WU X L. Materials Today Nano\[J\],2018,2: 15-20.\[22\]HUTCHINSON J W. Mathematics and Mechanics of Solids\[J\],2014,19(1): 39-55.\[23\]LIU B X,HUANG L J,KAVEENDRAN B,et al. Composites Part B\[J\],2017,108: 377-385.\[24\]ZHAO J F,LIU B X,WANG Y F,et al. Mechanics of Materials\[J\],2023,179: 104599.\[25\]LIU L,YU Q,WANG Z,et al. Science\[J\],2020,368(6497): 1347-1352.\[26\]AN Q,YANG W F,LIU B X,et al. Journal of Materials Research\[J\],2020,35: 2684-2700.\[27\]ZHENG S J,BEYERLEIN I J,CARPENTER J S,et al. Nature Communications\[J\],2013,4: 1696.\[28\]门玉涛,王世斌,李林安,等. 实验力学\[J\],2013,28(1): 36-48.MEN Y T,WANG S B,LI L A,et al.Journal of Experimental Mechanics\[J\],2013,28(1): 36-48.\[29\]LI T,SUO Z. International Journal of Solids and Structures\[J\],2007,44(6): 1696-1705.\[30\]LIU Y,WANG X J,XU Y M,et al.PNAS\[J\],2019,116(31): 15368-15377.\[31\]LI T,HUANG Z Y,XI Z C,et al. Mechanics of Materials\[J\],2005,37(2/3): 261-273.\[32\]LI T,SUO Z. International Journal of Solids and Structures\[J\],2006,43(7/8): 2351-2363.\[33\]XU S,ZHANG Y H,JIA L,et al.Science\[J\],2014,344(6179): 70-74.\[34\]SERROR M H. Journal of Advanced Research\[J\],2013,4(1): 83-92.\[35\]MA H W,ZHAO Y C,LYU Z,et al. Journal of the Mechanics and Physics of Solids\[J\],2023,181: 105467.\[36\]YU W X,LIU B X,ZHAO J F,et al. Scripta Materialia\[J\],2024, 241: 115865.\[37\]ZHENG S J,CARPENTER J S,WANG J,et al. Applied Physics Letters\[J\],2014,105(1): 111901.\[38\]JIA N,ROTERS F,EISENLORHR P,et al. Acta Materialia\[J\],2013,61(12): 4591-4606.\[39\]HILL R,HUTCHINSON J W. Journal of the Mechanics and Physics of Solids\[J\],1975,23(4/5): 239-264.\[40\]STEIF P S. International Journal of Solids and Structures\[J\],1986,22(2): 195-207.\[41\]STEIF P S. International Journal of Solids and Structures\[J\],1986,22(12): 1571-1578.\[42\]STEIF P S. International Journal of Solids and Structures\[J\],1990,26(8): 915-925.\[43\]HUANG M,XU C,FAN G H,et al. Acta Materialia\[J\],2018,153: 235-249.\[44\]STOVER A K,KRYWOPUSK N M,FRITZ G M,et al. Journal of Materials Science\[J\],2013,48(17): 5917-5929.\[45\]YANG Y H,WANG D Z,LIN J,et al. Materials & Design\[J\],2015,85: 635-639.\[46\]WU K,CHANG H,MAAWADE E,et al. Materials Science and Engineering A\[J\],2010,527(13/14): 3073-3078.\[47\]ZHENG S J,WANG J,CARPENTER J S,et al. Acta Materialia \[J\],2014,79: 282-291.\[48\]JIANG S,LIN PENG R,ZHAO X,et al. Materials Research Letters\[J\],2022,11(2): 126-133.\[49\]DUAN J Q,QUADIR M Z,XU W,et al. Acta Materialia\[J\],2017,123: 11-23.\[50\]DING H S,LEE L J M,LEE B R,et al. Materials Science and Engineering A\[J\],2007,444(1/2): 265-270.\[51\]LIU H S,ZHANG B,ZHANG G P. Scripta Materialia\[J\],2011,64(1): 13-16.\[52\]WANG T,LIU W L,LIU Y M,et al. Journal of Materials Processing Technology\[J\],2021,295: 117157.\[53\]WANG T,LI S,NIU H,et al. Journal of Materials Research and Technology\[J\],2020,9(3): 5840-5847.\[54\]ZHANG B Y,LIU B X,HE J N,et al.Materials Science and Engineering A\[J\],2019,740-741: 92-107.\[55\]ZHANG B Y,LIU B X,HE J N,et al.Materials Characterization\[J\],2020,169: 110606.\[56\]YU W X,LIU B X,HE J N,et al. Materials Science and Engineering A\[J\],2019,767: 138426.\[57\]YU W X,LIU B X,CUI X P,et al. Materials Science and Engineering A\[J\],2018,727: 70-77.\[58\]COHADES A,CETIN A,MORTENSEN A. Materials & Design\[J\],2015,66: 412-420.\[59\]SNYDER B C,WADSWORH J,SHERBY O D. Acta Metallurgica\[J\],1984,32(6): 919-932.\[60\]ZHANG X,XU C Y,GAO K,et al. Materials Science and Engineering A\[J\],2020,798: 140111.\[61\]NAMBU S,MICHIUCHI M,INOUE J,et al.Composites Science and Technology\[J\],2009,69(11-12): 1936-1941.\[62\]LIU B X,HUANG L J,GENG L,et al. Journal of Alloys and Compounds\[J\],2014,602: 187-192.\[63\]HE B B,HU B,YEN H W,et al.Science\[J\],2017,357(6355): 1029-1032.\[64\]GUO Y J,QIAO G J,JIAN W Z,et al.Materials Science and Engineering A\[J\],2010,527(20): 5234-5240.\[65\]SHI P J,LI R G,LI Y,et al.Science\[J\],2021,373(6557): 912-918.\[66\]LIU B X,HUANG L J,GENG L,et al. Materials Science and Engineering A\[J\],2013,583: 182-187.\[67\]WANG Y F,HUANG C X,LI Y S,et al.International Journal of Plasticity\[J\],2020,124: 186-198.\[68\]WANG Y F,WEI Y G,ZHAO Z F,et al. International Journal of Plasticity\[J\],2022,149: 103159.\[69\]WANG Y F,HUANG C X,LI Z K,et al. Extreme Mechanics Letters\[J\],2020,37: 100686.\[70\]LIANG F,ZHANG B,YONG Y,et al.International Journal of Plasticity\[J\],2020,132: 102745.\[71\]GAO Y F,ZHANG W,SHI P J,et al. Materials Today Advances\[J\],2020,8: 100103.\[72\]WANG X,LI T,GAO Y F,et al. Extreme Mechanics Letters\[J\],2021,48: 101413.\[73\]刘宝玺, 林曾孟, 殷福星. 精密成形工程\[J\],2021,13(3): 49-61.LIU B X,LIN Z M,YIN F X. Journal of Netshape Forming Engineering\[J\],2021,13(3): 49-61.\[74\]YANG B,LIU B X,FAN K Y,et al. Materials Science and Engineering A\[J\],2023,887: 145765.\[75\]蒋虽合. FeNiAl基超强钢的纳米析出行为和强韧化机制研究\[D\]. 北京:北京科技大学,2018.JIANG S H. Study on the Nanoprecipitation Behavior and the Resultant Strengthening and Ductilizing Mechanism in FeNiAl Based Ultrastrong Steels\[D\]. Beijing:University of Science and Technology Beijing,2018. \[76\]欧平. Super304H奥氏体耐热钢的时效析出与强化机理\[D\]. 上海:上海交通大学,2015.OU P. Aging Precipitation Behavior and Strengthening Mechanism in Super304H Austenitic Heat Resistant Steel\[D\]. Shanghai:Shanghai Jiao Tong University,2015. \[77\]ZHU Y T,WU X L. Progress in Materials Science \[J\],2023,131: 101019.\[78\]CHENG Z,BU L F,ZHANG Y,et al. Acta Materialia\[J\],2023,246: 118673.\[79\]CHENG Z,BU L F,ZHANG Y,et al. PNAS\[J\],2022,119(3): 2116808119.\[80\]HUANG C X,WANG Y F,MA X L,et al. Materials Today\[J\],2018,21(7): 713-719.\[81\]WANG W,LIU Y K,ZHANG Z H,et al. Journal of Materials Science and Technology\[J\],2023,132: 110-118.\[82\]WANG X G,WANG L,HUANG M X. Acta Materialia\[J\],2017,124: 17-29.\[83\]KOCKS U F. Journal of Engineering Materials and Technology\[J\],1976,98(1): 76-85.\[84\]ESTRIN Y. Journal of Materials Processing Technology\[J\],1998,80-81: 33-39.\[85\]曹文全, 徐海峰, 张明达,等. 钢铁\[J\],2016,51(9):1-10.CAO W Q,XU H F,ZHANG M D,et al. Iron & Steel\[J\],2016,51(9):1-10.\[86\]甄良, 邵文柱, 杨德庄. 晶体材料强度与断裂微观理论\[M\]. 北京:科学出版社,2017:291-298.ZHEN L,SHAO W Z,YANG D Z. Microscopic Theory of Strength and Fracture of Crystal Materials\[M\]. Beijing: China Science Publishing & Media Ltd.,2017:291-298. \[87\]LAWN B. 脆性固体断裂力学\[M\]. 龚江宏译. 北京:高等教育出版社,2009:13-67.LAWN B. Fracture of Brittle Solids\[M\]. Translated by GONG J H. Beijing:Higher Education Press,2009:13-67. \[88\]CAO W Q,ZHANG M D,HUANG C X,et al. Scientific Reports\[J\],2017,7: 41459.\[89\]刘宝玺. 层状TiTiBw/Ti复合材料的制备和力学行为研究\[D\]. 哈尔滨:哈尔滨工业大学,2014.LIU B X. Research on Fabrication and Mechanical Behavior of Laminated TiTiBw/Ti Composites\[D\]. Harbin: Harbin Institute of Technology,2014.\[90\]HWU K L,DERBY B. Acta Materialia\[J\],1999,47(2): 529-543.\[91\]杨卫. 宏微观断裂力学\[M\]. 北京:国防工业出版社,1995:15-22.YANG W. Macroscopic and Microscopic Fracture Mechanics\[M\]. Beijing:National Defense Industry Press,1995:15-22.\[92\]LIU B X,HUANG L J,GENG L,et al. Materials Science and Engineering A\[J\],2014,610: 344-349.\[93\]LIU B X,HUANG L J,WANG B,et al. Materials Science and Engineering A\[J\],2014,617: 115-120.\[94\]LIU B X,HUANG L J,GENG L,et al. Materials Science and Engineering A \[J\],2014,611: 290-297.\[95\]ZHANG R F,BEYERLEIN I J,ZHENG S J,et al. Acta Materialia\[J\],2016,113: 194-205.\[96\]YAN S T,QI Z X,CHEN Y,et al. Acta Materialia\[J\],2021,215: 117091.

备注/Memo

备注/Memo:
收稿日期:2023-11-10修回日期:2023-12-29基金项目:国家自然科学基金重点项目(U23Z202349);河北省自然科学基金面上项目(E2023202233)第一作者:刘宝玺,男,1986年生,副研究员,博士生导师通讯作者:郑士建,男,1980年生,教授,博士生导师,Email:sjzheng@hebut.edu.cn
更新日期/Last Update: 2024-01-02