《中国材料进展网》

您现在的位置:首 页 >Industry News > 正文

Depolarization of multidomain ferroelectric materials

分享到:


发布时间:2019/6/26 10:27:56 浏览次数:1619


Depolarization of multidomain ferroelectric materials
Dong Zhao, Thomas Lenz, Gerwin H. Gelinck, Pim Groen, Dragan Damjanovic, Dago M. de Leeuw & Ilias Katsouras
Nature Communicationsvolume 10, Article number: 2547 (2019) | Download Citation


[Abstract]
Depolarization in ferroelectric materials has been studied since the 1970s, albeit quasi-statically. The dynamics are described by the empirical Merz law, which gives the polarization switching time as a function of electric field, normalized to the so-called activation field. The Merz law has been used for decades; its origin as domain-wall depinning has recently been corroborated by molecular dynamics simulations. Here we experimentally investigate domain-wall depinning by measuring the dynamics of depolarization. We find that the boundary between thermodynamically stable and depolarizing regimes can be described by a single constant, Pr/ε0εferroEc. Among different multidomain ferroelectric materials the values of coercive field, Ec, dielectric constant, εferro, and remanent polarization, Pr, vary by orders of magnitude; the value for Pr/ε0εferroEc however is comparable, about 15. Using this extracted universal value, we show that the depolarization field is similar to the activation field, which corresponds to the transition from creep to domain-wall flow.

For any more information, please log on https://www.nature.com/articles/s41467-019-10530-4