我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

《中国材料进展网》

您现在的位置:首 页 >Industry News > 正文

Manganese oxidation as the origin of the anomalous capacity of Mn-containing ...

分享到:


发布时间:2019/7/30 18:03:11 浏览次数:2227


Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials

Maxwell D. Radin, Julija Vinckeviciute, Ram Seshadri & Anton Van der Ven
Nature Energy (2019) | Download Citation

Abstract
The lithium-excess manganese oxides are a candidate cathode material for the next generation of Li-ion batteries because of their ability to reversibly intercalate more Li than traditional cathode materials. Although reversible oxidation of lattice oxygen has been proposed as the origin of this anomalous excess capacity, questions about the underlying electrochemical reaction mechanisms remain unresolved. Here, we critically analyse the O2?/O? oxygen redox hypothesis and explore alternative explanations for the origin of the anomalous capacity, including the formation of peroxide ions or trapped oxygen molecules and the oxidation of Mn. First-principles calculations motivated by the Li–Mn–O phase diagram show that the electrochemical behaviour of the Li-excess manganese oxides is thermodynamically consistent with the oxidation of Mn from the +4 oxidation state to the +7 oxidation state and the concomitant migration of Mn from octahedral sites to tetrahedral sites. It is shown that the Mn oxidation hypothesis can explain the poorly understood electrochemical behaviour of Li-excess materials, including the activation step, the voltage hysteresis and voltage fade.

For any more information, please log on https://www.nature.com/articles/s41560-019-0439-6