[1]孔令明,阚洪敏,陈硕,等.铝锡合金研究进展[J].中国材料进展,2023,42(10):840-846.[doi:10.7502/j.issn.1674-3962.202106007]
 KONG Lingming,KAN Hongmin,CHEN Shuo,et al.Research Progress of Aluminum-Tin Alloy[J].MATERIALS CHINA,2023,42(10):840-846.[doi:10.7502/j.issn.1674-3962.202106007]
点击复制

铝锡合金研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第10期
页码:
840-846
栏目:
出版日期:
2023-10-31

文章信息/Info

Title:
Research Progress of Aluminum-Tin Alloy
文章编号:
1674-3962(2023)10-0840-07
作者:
孔令明12阚洪敏12陈硕12王晓阳12龙海波12
1. 沈阳大学机械工程学院 辽宁省多组硬质膜研究及应用重点实验室,辽宁 沈阳 110044 2. 沈阳大学机械工程学院 辽宁省先进材料制备技术重点实验室,辽宁 沈阳 110044
Author(s):
KONG Lingming12 KAN Hongmin12 CHEN Shuo12WANG Xiaoyang12 LONG Haibo12
1. Key Laboratory of Research and Application of Multiple Hard Films of Liaoning Province, School of Mechanical Engineering, Shenyang University,Shenyang 110044, China 2. Key Laboratory of Advanced Materials Preparation Technology of Liaoning Province, School of Mechanical Engineering, Shenyang University, Shenyang 110044, China
关键词:
铝锡合金制备方法工艺参数性能工程应用
Keywords:
aluminum-tin alloy preparation method process parameters propertiesengineering applications
分类号:
TB331
DOI:
10.7502/j.issn.1674-3962.202106007
文献标志码:
A
摘要:
铝锡合金因其优异的力学性能、摩擦学性能和导电导热性能而广泛应用于机械制造、航空航天以及交通运输等领域。为适应不同领域的需求衍生出多种多样的铝锡合金制备方法,其中机械合金化法可制备高强度铝锡合金,但高能球磨过程易于促进锡晶须生长,对合金材料安全性能有不利影响;铸造法工艺简单能耗较少,但易产生锡相的严重偏析;表面沉积法可制备纳米级且成分均匀的铝锡合金,但磁控溅射法和喷雾成型法均受限于基体形状,且前者设备成本较高不利于大规模生产,而电沉积法生产成本较低并且对于形状复杂的基体也能做到均匀镀覆,有望取代一些高成本制备方法,成为铝锡合金工业生产优选方案之一。另外,调控各类方法中不同的工艺参数也会对铝锡合金的形貌及性能产生不同的影响。参考近年有关铝锡合金的研究报道,综述了铝锡合金的制备方法、各种工艺参数对制备铝锡合金形貌和性能的影响以及铝锡合金在轴承材料、制氢材料和电子材料等方面的应用,同时对铝锡合金的未来研究前景作出展望。
Abstract:
Aluminum-tin alloys are widely used in machinery manufacturing, aerospace, transportation and other fields because of their excellent mechanical properties, tribological properties, and electrical and thermal conductivity. In order to adapt to the research in different fields, a variety of aluminum-tin alloy preparation methods have been derived. Among them, the mechanical alloying method can prepare high-strength aluminum-tin alloys; but it is easy to promote the growth of tin whiskers to adversely affect the safety performance of alloy materials during high energy ball milling process; the casting process is simple and consumes less energy, but it is easy to produce severe segregation of tin phase; the surface deposition method can prepare nano-sized and uniform aluminum-tin alloys; but the magnetron sputtering method and spray molding method are both limited by the shape of the substrate, and the high equipment cost of the former is not conducive to large-scale production; while the production cost of electrodeposition method is low, and the coating can be evenly prepared on some complex-shaped substrates. It is expected to replace some high-cost preparation methods and become one of the preferred solutions for aluminum-tin alloy industrial production. In addition, adjusting different process parameters in various methods will also have different effects on the morphology and properties of aluminum-tin alloys. By referring to research reports on aluminum-tin alloys in recent years, the preparation methods of aluminum-tin alloys, the influence of various process parameters on the preparation of morphology and properties of aluminum-tin alloys, and the applications of aluminum-tin alloys in bearing materials, hydrogen production materials and electronic materials are reviewed. At the same time, prospects for the future research of aluminum-tin alloys are put forward.

参考文献/References:

\[1\]LAI Z M,YE D. Journal of Materials Science: Materials in Electronics\[J\],2016,27(2):1177-1183. \[2\]ZENG M Q,HU R Z,SONG K Q,et al. Tribology Letters\[J\],2019,67(3):84. \[3\]LIU X,ZENG M Q,MA Y,et al. Materials Science & Engineering A\[J\],2008,506(1):1-7. \[4\]LIU X,ZENG M Q,MA Y,et al. Wear\[J\],2012,294/295: 387-394. \[5\]ZHANG Y,ZHANG P,HE W,et al. Journal of Materials Science:Materials in Electronics\[J\],2020,31(2):1328-1334. \[6\]SUN M L,LONG X P,DONG M Y,et al. Materials Characterization\[J\],2017,134:354-361. \[7\]HUANG C M,NUNEZ D,COBUM J,et al. Microelectronics Reliability\[J\],2018,81:22-30. \[8\]RAMADAN M,AYADI B,RAJHI W,et al. Key Engineering Materials\[J\],2020,4894:108-114. \[9\]XU G M,LI B M,GUI J Z. Journal of Iron and Steel Research International\[J\],2006,13(2):73-76. \[10\]CONFALONIERI C,GARIBOLDI E. Journal of Alloys and Compounds\[J\],2021,881:160596. \[11\]RUSIN N M,IVANOV K V. Russian Journal of NonFerrous Metals\[J\],2011,52(6):204-510. \[12\]RUSIN N M,SKORENTSEV A L,KOLUBAEV E A. Journal of Materials Engineering and Performance\[J\],2020,29(3):1955-1963. \[13\]BAK J H,CHO D H,SHIN S,et al. The Korean Institute of Metals and Materials\[J\],2018,24(1):205-215. \[14\]RUSIN N M,SKORENTSEV A L. Applied Mechanics and Materials\[J\],2013,2585:110-114. \[15\]郭巧琴,蒋百灵,李建平,等. 特种铸造及有色合金\[J\],2010,30(12):1150-1152. GUO Q Q,JIANG B L,LI J P,et al. Special Casting & Nonferrous Alloys\[J\],2010,30(12):1150-1152. \[16\]郭巧琴,李建平,蒋百灵. 材料热处理学报\[J\],2015,36(5):161-166. GUO Q Q,LI J P,JIANG B L. Transactions of Materials and Heal Treatment\[J\],2015,36(5):161-166. \[17\]GUO Q Q,LI J P,GUO Y C.Rare Metal Materials and Engineering\[J\],2015,44(8):1857-1861. \[18\]郭巧琴,蒋百灵,李建平.中国有色金属学报\[J\],2012,22(8):2289-2294. GUO Q Q,JIANG B L,LI J P. The Chinese Journal of Nonferrous Metals\[J\],2012,22(8):2289-2294. \[19\]郭巧琴,李建平.西安工业大学学报\[J\],2016,36(6):481-484. GUO Q Q,LI J P. Journal of Xian Technological University\[J\],2016,36(6):481-484. \[20\]郭巧琴,蒋百灵,李建平,等.特种铸造及有色合金\[J\],2011,31(4):308-310. GUO Q Q,JIANG B L,LI J P,et al. Special Casting & Nonferrous Alloys\[J\],2011,31(4):308-310. \[21\]于佃荣,江强,周细应. 腐蚀与防护\[J\],2012,33(11):952-959. YU D R,JIANG Q,ZHOU X Y. Corrosion & Protection\[J\],2012,33(11):952-959. \[22\]宋惠,刘智勇,唐纬虹,等. 兵器材料科学与工程\[J\],2017,40(6):26-29. SONG H,LIU Z Y,TANG W H,et al. Ordnance Material Science and Engineering\[J\],2017,40(6):26-29. \[23\]LIU Y H,LIU X J,CHEN X R,et al. International Journal of Hydrogen Energy\[J\],2017,42(16):10943-10951. \[24\]ANIL M,BALAJI S,GHOSH M K,et al. Journal of Materials Engineering and Performance\[J\],2010,19(9):1357-1361. \[25\]PLATIS F S,CAPUANO G A. Journal of the Electrochemical Society\[J\],1987,134:2425-2429. \[26\]BELOV N A,AKOPYAN T K,GERSHMAN I S,et al. Journal of Alloys and Compounds\[J\],2017,695:2730-2739. \[27\]BERTELLI F,CHEUNG N,FERRIIRA I L,et al. The Journal of Chemical Thermodynamics\[J\],2016,98:9-20. \[28\]LIU H X,WANG C P,YU Y,et al. Journal of Phase Equilibria and Diffusion\[J\],2012,33(1):9-19. \[29\]ROSALES I,GONZALEZ R G,GAMA J L,et al. Materials Sciences and Applications\[J\],2014,5(5):330-337. \[30\]DONG B W,WU Z P,WANG P F,et al. Journal of Alloys and Compounds\[J\],2021,874:159756. \[31\]SETHURAM D,KOPPAD P G,SHETTY H,et al. Materials Today: Proceedings\[J\],2018,5(11):24505-24514. \[32\]KALASHNIKOV I E,BOLOTOVA L K,KOBELEVA L I,et al. Inorganic Materials:Applied Research\[J\],2021,12(3):750-754. \[33\]JAYARAM B,SATYANARAYAN. Transactions of the Indian Institute of Metals\[J\],2019,72(7):1941-1947. \[34\]CHIKOVA O A,KONSTANTINOV A N,SHISHKINA E V,et al. Russian Metallurgy (Metally)\[J\],2013,2013(7):535-544. \[35\]VALIZADEH A R,KIANIRASHID A R,AVAZKONANDEHGHARAVOL M H,et al. Metallography,Microstructure,and Analysis\[J\],2013,2(2):107-112. \[36\]SONG K Q,LU Z C,ZHU M,et al. Surface and Coatings Technology\[J\],2017,325:682-688. \[37\]LIU Y,JIANG S,WU C J,et al. Journal of Phase Equilibria and Diffusion\[J\],2019,40(2):235-246. \[38\]WANG B J,WU W H,LIU J M,et al. Applied Physics A: Materials Science & Processing\[J\],2020,126(2):112-120. \[39\]KLEBER S C,ELISANGELA S M,FREDERICO A P F,et al. Metallurgical and Materials Transactions A\[J\],2010,41(4):972-984. \[40\]MAKHATHA M E,FATOBA O S,AKINLABI E T. International Journal of Advanced Manufacturing Technology\[J\],2018,94(1):773-787. \[41\]ZHONG Y B,WANG H,WANG Y B,et al. Metallurgical and Materials Transactions A\[J\],2017,48(7):3377-3388. \[42\]GEBRETSADIK D W,HARDELL J,PRAKASH B. Wear\[J\],2015,340-341:63-72. \[43\]LU Z C,GAO Y,ZENG M Q,et al. Wear\[J\],2014,309(1/2):216-225. \[44\]BERTELLI F,FREITAS E S,CHEUNG N,et al. Journal of Alloys and Compounds\[J\],2017,695:3621-3631. \[45\]FIGUEROA G G,JACOBO V H,ORTIZ A,et al. Tribology Letters\[J\],2015,59(5):14-23. \[46\]KURBATKIN I I,BELOV N A,OZERSKIY O N,et al. Journal of Friction and Wear\[J\],2014,35(2):93-97. \[47\]BOCKRIS J O M. International Journal of Hydrogen Energy\[J\],2013,38(6):2579-2588. \[48\]KONNO C,CRUZ C,COSTA T,et al. International Journal of Hydrogen Energy\[J\],2021,46(24):12654-12671. \[49\]LIU Y,LIU X,CHEN X,et al. International Journal of Hydrogen Energy\[J\],2017,42(16):10943-10951. \[50\]LIU X J,ZOU H W,ZHANG J B,et al. Journal of Phase Equilibria and Diffusion\[J\],2019,40(2):176-187. \[51\]MASOUD E,MEHMOUSH N,MANSOURE P,et al. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\[J\],2019,90(4):637-646. \[52\]TU H,ZHANG Z Q,LIU Y,et al. Journal of Phase Equilibria and Diffusion\[J\],2020,41(1):56-65. \[53\]刘璇. 热浸镀AlZnInSi和AlZnSnSi镀层的耐腐蚀性能及微观组织研究\[D\]. 沈阳:东北大学,2014. LIU X. Corrosion Resistance and Microstructure of HotDip AlZnInSi and AlZnSnSi Coatings\[D\].Shenyang:Northeastern University,2014. \[54\]SHYROKOV V V,KHLOPYK O P. Materials Science\[J\],2010,46(3):371-375. \[55\]PAN X M,DUAN H P. Rare Metals\[J\],2015,41(12):1-7. \[56\]姚函妤,沈鸿烈,李金泽,等. 南京航空航天大学学报\[J\],2015,47(5):672-677. YAO H Y,SHEN H L,LI J Z,et al. Journal of Nanjing University of Aeronautics & Astronautics\[J\],2015,47(5):672-677.

备注/Memo

备注/Memo:
收稿日期:2021-06-08修回日期:2021-12-03 基金项目:辽宁省自然科学基金项目(2021-MS-343) 第一作者:孔令明,男,1997年生,硕士 通讯作者:阚洪敏,女,1978年生,教授,硕士生导师, Email:kanhongmin2002@163.com
更新日期/Last Update: 2023-09-28