[1]蔺浩博,刘宁涛,吴思淼,等.氧化镓的n型掺杂研究进展[J].中国材料进展,2023,42(04):277-288.[doi:10.7502/j.issn.1674-3962.202207018]
 LIN Haobo,LIU Ningtao,WU Simiao,et al.Research Progress of n-Type Doping of Gallium Oxide[J].MATERIALS CHINA,2023,42(04):277-288.[doi:10.7502/j.issn.1674-3962.202207018]
点击复制

氧化镓的n型掺杂研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第04期
页码:
277-288
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Research Progress of n-Type Doping of Gallium Oxide
文章编号:
1674-3962(2023)04-0277-12
作者:
蔺浩博12刘宁涛1吴思淼12张文瑞1叶继春1
1. 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201 2. 宁波大学材料科学与化学工程学院,浙江 宁波 315211
Author(s):
LIN Haobo12 LIU Ningtao1 WU Simiao12ZHANG Wenrui1YE Jichun1
1. Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences, Ningbo 315201, China 2. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
关键词:
氧化镓n型掺杂本征缺陷宽禁带氧化物半导体
Keywords:
gallium oxide n-type doping intrinsic defects wide-bandgap oxides semiconductors
分类号:
O471
DOI:
10.7502/j.issn.1674-3962.202207018
文献标志码:
A
摘要:
作为一种新兴宽禁带半导体,氧化镓具有宽带隙、高击穿电压、高巴利加优值及良好的热稳定性的优点,在功率电子器件、日盲紫外探测器以及气体探测器等领域有着极大的应用潜力。首先概述了氧化镓相比于其他半导体材料存在的优势,介绍了氧化镓的不同晶相(α、β、γ、δ、ε、κ)的物理性质及相应的潜在应用方向。其次,详细讨论了氧化镓的n型掺杂的研究现状,包括本征缺陷,Si,Ge,Sn以及其他高价元素掺杂的机理和输运调控规律。最后,探讨了氧化镓目前存在的主要问题,包括由于难以形成自由空穴而导致的p型掺杂困难以及本征热导率过低导致的器件难以散热的问题,并对氧化镓未来的发展进行了展望。
Abstract:
As an emerging ultrawide bandgap semiconductor, gallium oxide has great application potential in power electronic devices, solar-blind ultraviolet detectors and gas detectors, which has the advantages of wide bandgap, high breakdown voltage, high Baliga‘s figure of merit and good thermal stability. Firstly, the advantages of gallium oxide over other semiconductor materials are summarized, and the physical properties of different crystalline phases (α, β, γ, δ, ε, κ) of gallium oxide and their corresponding potential application directions are introduced. Secondly, the research status of n-type doping of gallium oxide is discussed in detail, including intrinsic defects, doping mechanism and transport modulation of Si, Ge, Sn and other high-valence dopants. Finally, current main problems of gallium oxide are discussed, including the difficulty of p-type doping and low intrinsic thermal conductivity, and the development forground of gallium oxide in the future is prospected.

参考文献/References:

\[1\]PEARTON S J, REN F, TADJER M, et al. Journal of Applied Physics\[J\], 2018, 124(22): 220901. \[2\]HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Physica Status Solidi (a)\[J\], 2014, 211(1): 21-26. \[3\]PEARTON S J, YANG J, CARYIV P H, et al. Applied Physics Reviews\[J\], 2018, 5(1): 011301. \[4\]ROY R, HILL V G, OSBORN E F. Journal of the American Chemical Society\[J\], 1952, 74(3): 719-722. \[5\]YOSHIOKA S, HAYASHI H, KUWABARA A, et al. Journal of Physics: Condensed Matter\[J\], 2007, 19(34): 346211. \[6\]GELLER S. The Journal of Chemical Physics\[J\], 1960, 33(3): 676-684. \[7\]PEELAERS H, van de WALLE C G. Physical Review B\[J\], 2016, 94(19): 195203. \[8\]DONG L, JIA R, XIN B, et al. Scientific Reports\[J\], 2017, 7(1): 40160. \[9\]CHABAK K D, MCCANDLESS J P, MOSER N A, et al. IEEE Electron Device Letters\[J\], 2018, 39(1): 67-70. \[10\]XUE H, HE Q, JIAN G, et al. Nanoscale Research Letters\[J\], 2018, 13(1): 290. \[11\]KAUR D, KUMAR M. Advanced Optical Materials\[J\], 2021, 9(9): 2002160. \[12\]AFZAL A. Journal of Materiomics\[J\], 2019, 5(4): 542-557. \[13\]ZHANG J, SHI J, QI D C, et al. APL Materials\[J\], 2020, 8(2): 020906. \[14\]PING L K, BERHANUDDIN D D, MONDAL A K, et al. Chinese Journal of Physics\[J\], 2021, 73: 195-212. \[15\]PLAYFORD H Y, HANNON A C, TUCKER M G, et al. The Journal of Physical Chemistry C\[J\], 2014, 118(29): 16188-16198. \[16\]TAKANO Y, HAYASHI Y, FUKUSHIMA J, et al. Advanced Powder Technology\[J\], 2021, 32(3): 860-865. \[17\]HOU Y, WU L, WANG X, et al. Journal of Catalysis\[J\], 2007, 250(1): 12-18. \[18\]SESHADRI H, CHERALATHAN M, SINHA P K. Research on Chemical Intermediates\[J\], 2013, 39(3): 991-1001. \[19\]LIU H, WANG Z, LI H, et al. RSC Advances\[J\], 2018, 8(26): 14328-14334. \[20\]VASANTHI V, KOTTAISAMY M, RAMAKRISHNAN V. Ceramics International\[J\], 2019, 45(2, Part A): 2079-2087. \[21\]GAKE T, KUMAGAI Y, OBA F. Physical Review Materials\[J\], 2019, 3(4): 044603. \[22\]FORNARI R, PAVESI M, MONTEDORO V, et al. Acta Materialia\[J\], 2017, 140: 411-416. \[23\]PLAYFORD H Y, HANNON A C, BARNEY E R, et al. ChemistryA European Journal\[J\], 2013, 19(8): 2803-2813. \[24\]CORA I, MEZZADRI F, BOSCHI F, et al. CrystEngComm\[J\], 2017, 19(11): 1509-1516. \[25\]KIM J, TAHARA D, MIURA Y, et al. Applied Physics Express \[J\], 2018, 11(6): 061101. \[26\]RANGA P, CHO S B, MISHRA R, et al. Applied Physics Express\[J\], 2020, 13(6): 061009. \[27\]CHO S B, MISHRA R. Applied Physics Letters\[J\], 2018, 112(16): 162101. \[28\]DEK P, DUY H Q, SEEMANN F, et al. Physical Review B\[J\], 2017, 95(7): 075208. \[29\]VARLEY J B, WEBER J R, JANOTTI A, et al. Applied Physics Letters\[J\], 2010, 97(14): 142106. \[30\]YAMAGA M, VíLLORA E G, SHIMAMURA K, et al. Physical Review B\[J\], 2003, 68(15): 155207. \[31\]LORENZ M R, WOODS J F, GAMBINO R J. Journal of Physics and Chemistry of Solids\[J\], 1967, 28(3): 403-404. \[32\]OANH V T K, LEE D U, KIM E K. Journal of Alloys and Compounds\[J\], 2019, 806: 874-880. \[33\]GUO D Y, QIAN Y P, SU Y L, et al. AIP Advances\[J\], 2017, 7(6): 065312. \[34\]ZHANG T, GUAN D, LIU N, et al. Applied Physics Express\[J\], 2022, 15(2): 022007. \[35\]QIN Y, LONG S, HE Q, et al. Advanced Electronic Materials\[J\], 2019, 5(7): 1900389. \[36\]KING P D C, MCKENZIE I, VEAL T D. Applied Physics Letters\[J\], 2010, 96(6): 062110. \[37\]VLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Applied Physics Letters\[J\], 2008, 92(20): 202120. \[38\]GOTO K, KONISHI K, MURAKAMI H, et al. Thin Solid Films\[J\], 2018, 666: 182-184. \[39\]ALEMA F, SERYOGIN G, OSINSKY A, et al. APL Materials\[J\], 2021, 9(9): 091102. \[40\]SIAH S C, BRANDT R E, LIM K, et al. Applied Physics Letters\[J\], 2015, 107(25): 252103. \[41\]GALAZKA Z, IRMSCHER K, UECKER R, et al. Journal of Crystal Growth\[J\], 2014, 404: 184-191. \[42\]DU X, LI Z, LUAN C, et al. Journal of Materials Science\[J\], 2015, 50(8): 3252-3257. \[43\]MA N, TANEN N, VERMA A, et al. Applied Physics Letters\[J\], 2016, 109(21): 212101. \[44\]FU B, JIAN G, MU W, et al. Journal of Alloys and Compounds \[J\], 2022, 896: 162830. \[45\]HOSHIKAWA K, KOBAYASHI T, OHBA E, et al. Journal of Crystal Growth\[J\], 2020, 546: 125778. \[46\]OHIRA S, SUZUKI N, ARAI N, et al. Thin Solid Films\[J\], 2008, 516(17): 5763-5767. \[47\]KAWAHARAMURA T, DANG G T, FURUTA M. Japanese Journal of Applied Physics\[J\], 2012, 51: 040207. \[48\]ONUMA T, FUJIOKA S, YAMAGUCHI T, et al. Journal of Crystal Growth\[J\], 2014, 401: 330-333. \[49\]JEON H M, LEEDY K D, LOOK D C, et al. APL Materials\[J\], 2021, 9(10): 101105. \[50\]RAFIQUE S, KARIM M R, JOHNSON J M, et al. Applied Physics Letters\[J\], 2018, 112(5): 052104. \[51\]OSHIMA T, MATSUYAMA K, YOSHIMATSU K, et al. Journal of Crystal Growth\[J\], 2015, 421: 23-26. \[52\]AHMADI E, KOKSALDI O S, KAUN S W, et al. Applied Physics Express\[J\], 2017, 10(4): 041102. \[53\]RANGA P, BHATTACHARYYA A, WHITTAKERBROOKS L, et al. Journal of Vacuum Science & Technology A\[J\], 2021, 39(3): 030404. \[54\]KNEI M, HASSA A, SPLITH D, et al. APL Materials\[J\], 2019, 7(2): 022516. \[55\]KRACHT M, KARG A, SCHRMANN J, et al. Physical Review Applied\[J\], 2017, 8(5): 054002. \[56\]LANY S. APL Materials\[J\], 2018, 6(4): 046103. \[57\]GOGOVA D, WAGNER G, BALDINI M, et al. Journal of Crystal Growth\[J\], 2014, 401: 665-669. \[58\]BALDINI M, ALBRECHT M, FIEDLER A, et al. Journal of Materials Science\[J\], 2016, 51(7): 3650-3656. \[59\]COOKE J, RANGA P, JESENOVEC J, et al. Scientific Reports\[J\], 2022, 12(1): 3243. \[60\]NARESHKUMAR G, MACINTYRE H, SUBASHCHANDRAN S, et al. Physica Status Solidi (b)\[J\], 2021, 258(2): 2000465. \[61\]ZHOU W, XIA C, SAI Q, et al. Applied Physics Letters\[J\], 2017, 111(24): 242103. \[62\]LONG X, NIU W, WAN L, et al. Crystals\[J\], 2021, 11(2): 135. \[63\]SHANG Y, TANG K, CHEN Z, et al. Materials Science in Semiconductor Processing\[J\], 2021, 134: 106040. \[64\]CUI H, MOHAMED H F, XIA C, et al. Journal of Alloys and Compounds\[J\], 2019, 788: 925-928. \[65\]RUBIO E J, RAMANA C V. Applied Physics Letters\[J\], 2013, 102(19): 191913. \[66\]RUBIO E J, MATES T E, MANANDHAR S, et al. The Journal of Physical Chemistry C\[J\], 2016, 120(47): 26720-26735. \[67\]NARAYANAN M, PUNJAL A, HOSSAIN E, et al. arXiv preprint arXiv:220304941\[J\], 2022. \[68\]BATTU A K, MANANDHAR S, RAMANA C V. Advanced Materials Interfaces\[J\], 2017, 4(19): 1700378. \[69\]SALEH M, VARLEY J B, JESENOVEC J, et al. Semiconductor Science and Technology\[J\], 2020, 35(4): 04LT1. \[70\]YAN J, QU C. Journal of Semiconductors \[J\], 2016, 37(4): 042002. \[71\]MORIMOTO S, NISHINAKA H, YOSHIMOTO M. Thin Solid Films\[J\], 2019, 682: 18-23. \[72\]QIAN L X, GU Z, HUANG X, et al. ACS Applied Materials & Interfaces\[J\], 2021, 13(34): 40837-40846. \[73\]UM J H, CHOI B S, JEONG D H, et al. Electronic Materials Letters\[J\], 2021, 17(2): 142-147. \[74\]MALAKOUTIAN M, SONG Y, YUAN C, et al. Applied Physics Express\[J\], 2021, 14(5): 055502. \[75\]CHENG Z, WHEELER V D, BAI T, et al. Applied Physics Letters\[J\], 2020, 116(6): 062105. \[76\]VARLEY J B, JANOTTI A, FRANCHINI C, et al. Physical Review B\[J\], 2012, 85(8): 081109. \[77\]KYRTSOS A, MATSUBARA M, BELLOTTI E. Applied Physics Letters\[J\], 2018, 112(3): 032108. \[78\]TADJER M J, LYONS J L, NEPAL N, et al. ECS Journal of Solid State Science and Technology\[J\], 2019, 8(7): 3187-3194. \[79\]JIANG J, ZHANG J. Ceramics International\[J\], 2020, 46(2): 2409-2412. \[80\]CHIKOIDZE E, SARTEL C, YAMANO H, et al. Journal of Vacuum Science & Technology A\[J\], 2022, 40(4): 043401. \[81\]LYONS J L. Semiconductor Science and Technology\[J\], 2018, 33(5): 05LT2. \[82\]POLYAKOV A Y, SMIRNOV N B, SHCHEMEROV I V, et al. Applied Physics Letters\[J\], 2018, 113(14): 142102. \[83\]WONG M H, LIN C H, KURAMATA A, et al. Applied Physics Letters\[J\], 2018, 113(10): 102103. \[84\]YAN H, GUO Y, SONG Q, et al. Physica B: Condensed Matter\[J\], 2014, 434: 181-184. \[85\]TAO J, LU H L, GU Y, et al. Applied Surface Science\[J\], 2019, 476: 733-740. \[86\]CHEN X, JAGADISH C, YE J. Fundamental Properties and Power Electronic Device Progress of Gallium Oxide\[M\]. John Wiley & Sons, Ltd., 2021: 235-352.

备注/Memo

备注/Memo:
收稿日期:2022-07-15修回日期:2022-08-18 基金项目:浙江省自然科学基金重点项目(LZ21F040001);宁波市 重大科技攻关项目(2022Z016) 第一作者:蔺浩博,男,1999年生,硕士研究生 通讯作者:张文瑞,男,1990年生,研究员,博士生导师, Email: zhangwenrui@nimte.ac.cn 叶继春,男,1977年生,研究员,博士生导师, Email: jichun.ye@nimte.ac.cn
更新日期/Last Update: 2023-03-22