[1]诸葛霞,诸葛飞.面向新一代智能视觉的光电忆阻器研究进展[J].中国材料进展,2023,42(08):614-624.[doi:10.7502/j.issn.1674-3962.202209016]
 ZHUGE Xia,ZHUGE Fei.Recent Progress in Optoelectronic Memristors for Next Generation Artificial Visual Systems[J].MATERIALS CHINA,2023,42(08):614-624.[doi:10.7502/j.issn.1674-3962.202209016]
点击复制

面向新一代智能视觉的光电忆阻器研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第08期
页码:
614-624
栏目:
出版日期:
2023-08-31

文章信息/Info

Title:
Recent Progress in Optoelectronic Memristors for Next Generation Artificial Visual Systems
文章编号:
1674-3962(2023)08-0614-11
作者:
诸葛霞1 诸葛飞234
1. 宁波工程学院电子与信息工程学院,浙江 宁波 315211 2. 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201 3. 中国科学院脑科学与智能技术卓越创新中心,上海 200031 4. 中国科学院大学材料科学与光电技术学院,北京 100049 5. 浙江大学 温州研究院,浙江 温州 325006
Author(s):
ZHUGE Xia1ZHUGE Fei234
1.School of Electronic and Information Engineering,Ningbo University of Technology, Ningbo 315211,China 2.Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China 3.Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences,Shanghai 200031, China 4.College of Materials Science and OptoElectronic Technology, University of Chinese Academy of Sciences,Beijing 100049, China et al.
关键词:
忆阻器光电器件人工视觉神经形态系统图像处理
Keywords:
memristor optoelectronic devices artificial visual systems neuromorphic systems image processing
分类号:
O472+.8
DOI:
10.7502/j.issn.1674-3962.202209016
文献标志码:
A
摘要:
基于冯·诺依曼计算架构和互补金属氧化物半导体(complementary oxide semiconductor, CMOS)技术的传统人工视觉系统,因其图像感知、存储和处理单元物理分离,在集成度、能耗、处理效率等方面均面临挑战。受生物视觉系统的启发,基于光电忆阻器的神经形态视觉系统可实现感/存/算共融,并具有视觉信息的并行处理功能,因此是新一代智能视觉的重要发展方向。该系统不仅能够模拟视网膜的功能,包括直接响应光信号、完成对比度增强及降噪等图像预处理工作,而且能够模拟大脑视皮层的功能,对图像进行识别、分类等,完成感知任务。对光电忆阻器件的研究进展及其在人工视觉系统中的应用进行了总结。首先概述了忆阻器的特征;其次综述了光电忆阻器件的研究进展,包括材料、结构、工作机理、突触功能模拟等;再次介绍了光电忆阻器在人工视觉系统中的应用;最后总结了光电忆阻器研究面临的困难以及未来发展趋势。
Abstract:
Conventional artificial visual systems are based on the von Neumann architecture and CMOS technologies, in which image perception, memory and processing units are physically separated, thus facing great challenges of realizing high-density integration, low power consumption and high speed.Inspired by biological visual systems, neuromorphic visual systems based on optoelectronic memristors can realize integrated sensing-computing-memory as well as parallel processing of visual information, which becomes one of the most important developing directions of artificial visual systems.They can not only mimic retinal functions such as responding directly to light and performing the preprocessing of visual information like image contrast enhancement and noise reduction, but also mimic the functions of the visual cortex, i.e., visual perception including pattern recognition and classification. This review focuses on the research progress of optoelectronic memristors and their applications in artificial visual systems. First, the features of memristor are introduced. Second, the research progress of optoelectronic memristors is reviewed in terms of materials, structures, working mechanisms and synaptic function emulation. Then, the applications of optoelectronic memristors in artificial visual systems are discussed. Finally, the problems of optoelectronic memristors which need be resolved for practical applications are summarized.

参考文献/References:

\[1\]SHEPHERD R K,SHIVDASANI M N,NAYAGAM D A X,et al.Trends in Biotechnology\[J\],2013,31(10): 562-571. \[2\]KOLB H.American Scientist\[J\],2003,91(1): 28-35. \[3\]LI Z X, ZENG X Y, WANG J R, et al. Frontiers in Neuroscience\[J\], 2021, 15: 717947. \[4\]DRACHMAN D A.Neurology\[J\],2005,64(12): 2004-2005. \[5\]KIM Y G,CHORTOS A,XU W T,et al.Science\[J\],2018,360(6392):998-1003. \[6\]LEE G J,CHOI C S,KIM D H,et al.Advanced Functional Materials\[J\],2018,28(24): 1705202. \[7\]SONG Y M,XIE Y Z,MALYARCHUK V,et al.Nature\[J\],2013,497: 95-99. \[8\]JEONG K H,KIM J Y,LEE L P.Science\[J\],2006, 312(5773): 557-561. \[9\]KO H C,STOYKOVICH M P,SONG J Z,et al.Nature\[J\],2008,454: 748-753. \[10\]JEONG D S,HWANG C S.Advanced Materials\[J\],2018,30(42): 1704729. \[11\]Proceedings of 2014 IEEE International Solid-State Circuits Conference\[C\].San Francisco,California,USA:IEEE,2014:10-14. \[12\]WULF W A,MCKEE S A.ACM SIGARCH Computer Architecture News\[J\],1995,23(1): 20-24. \[13\]DU C,CAI F X,ZIDAN M A,et al.Nature Communications\[J\],2017,8: 2204. \[14\]WU C X,KIM T W,CHOI H Y,et al.Nature Communications\[J\],2017,8: 752. \[15\]YAO P,WU H Q,GAO B,et al.Nature Communications\[J\],2017,8: 15199. \[16\]YU S M,GAO B,FANG Z,et al.Advanced Materials\[J\],2013,12(25): 1774-1779. \[17\]CHEN S,LOU Z,CHEN D,et al.Advanced Materials\[J\],2018,30(7): 1705400. \[18\]YANG X Y,XIONG Z Y,CHENG Y J,et al.Nano Energy\[J\],2020,78: 105246. \[19\]CHAI L.IEEE Transactions on Circuit Theory\[J\],1971,18(5): 507-519. \[20\]CHAI L.Applied Physics A\[J\],2011,102: 765-783. \[21\]STRUKOV D B,SNIDERL G S,STEWART D R,et al.Nature\[J\],2008,453: 80-83. \[22\]YANG J J,STRUKOV D B,STEWART D R.Nature Nanotechnology\[J\],2013,8: 13-24. \[23\]PREZIOSO M,MERRIKHBAYAT F,HOSKINS B D,et al.Nature\[J\],2015,521: 61-64. \[24\]SHERIDAN P M,CAI F X,DU C,et al.Nature Nanotechnology\[J\],2017,12: 784-789. \[25\]ALIBART F,ZAMANIDOOST E,STRUKOV D B.Nature Communications\[J\],2013,4: 2072. \[26\]SERB A,BILL J,KHIAT A,et al.Nature Communications\[J\],2016,7: 12611. \[27\]WANG J R, ZHUGE F. Advanced Materials Technologies\[J\], 2019, 4(3): 1800544. \[28\]WANG J R, ZHUGE X, ZHUGE F. Science and Technology of Advanced Materials\[J\], 2021, 22(1): 326-344. \[29\]ZHUGE F, LI K, FU B, et al. AIP Advances\[J\], 2015, 5(5): 057125. \[30\]XIA Q F,YANG J J.Nature Materials\[J\],2019,18: 309-323. \[31\]WANG M,CAI S H,PAN C,et al.Nature Electronics\[J\],2018,1: 130-136. \[32\]HU L X,YANG J,WANG J R,et al.Advanced Functional Materials\[J\],2021,31(4): 2170027. \[33\]ZHUGE X,WANG J R,ZHUGE F.Physica Status Solid (RRL) -Rapid Research Letters\[J\],2019,13(9): 1900082. \[34\]MAO J Y,ZHOU L,ZHU X J,et al.Advanced Optical Materials\[J\],2019,7(22): 1900766. \[35\]PAN X,JIN T Y,GAO J,et al.Small\[J\],2020,16(34): 2001504. \[36\]UNGUREANU M,ZAZPE R,GOLMAR F,et al.Advanced Materials\[J\],2012,24(18): 2496-2500. \[37\]BERA A,PENG H Y,LOUREMBAM J,et al.Advanced Fuinctional Materials\[J\],2013,23(39): 4977-4984. \[38\]HU D C,YANG R,JIANG L,et al.ACS Applied Materials & Interfaces\[J\],2018,10(7): 6463-6470. \[39\]TAN H W,LIU G,YANG H L,et al.ACS Nano\[J\],2017,11(11): 11298-11305. \[40\]LING H F,TAN K M,FANG Q Y,et al.Advanced Electronic Materials\[J\],2017,3(8):1600416. \[41\]LEE M Y,LEE W B,CHOI S B,et al.Advanced Materials\[J\],2017,29(28): 1700951. \[42\]CHEN Y,WEI Q,YIN J,et al.Advanced Electronic Materials\[J\],2018,4(9): 1800242. \[43\]ZHAO J H,ZHOU Z Y,WANG H,et al.Applied Physics Letters\[J\],2019,115(15): 153504. \[44\]DONG A H,CHANG K,WANG R Z,et al.Applied Physics Letters\[J\],2020,117(7): 072104. \[45\]ZHAO B,XIAO M,SHEN D Z,et al.Nanotechnology\[J\],2020,31(12): 125201. \[46\]XIAO W,SHAN L B,ZHANG H T,et al.Nanoscale\[J\],2021,13(4): 2502-2510. \[47\]GUAN X W,HU W J,HAQUE M A,et al.Advanced Functional Materials\[J\],2018,28(3): 1704665. \[48\]MA F M,ZHU Y B,XU Z W,et al.Advanced Functional Materials\[J\],2020,30(11): 1908901. \[49\]YANG L,SINGH M K,SHEN S W,et al.Advanced Functional Materials\[J\],2021,31(6): 2008259. \[50\]ZHANG K,MENG D H,BAI F M,et al.Advanced Functional Materials\[J\],2020,30(34): 2002945. \[51\]HE H K,YANG R,ZHOU W,et al.Small\[J\],2018,14(15): 1800079. \[52\]ZHOU W,YANG R,HE H K,et al.Applied Physics Letters\[J\],2018,113(6): 061107. \[53\]OKELLY C J,FAIRFIELD J A,MCCLOSKEY D,et al.Advanced Electronic Materials\[J\],2016, 6(2): 1500458. \[54\]ZHAO Y W,DAI S L,LIU D P,et al.Organic Electronics\[J\],2020,83: 105749. \[55\]JAAFAR A H,ONEIL M,KELLY S M,et al.Advanced Electronic Materials\[J\],2019,5(7): 1900197. \[56\]ZHU J D,ZHANG T,YANG Y C,et al.Applied Physics Reviews\[J\],2020,7(1): 011312. \[57\]HAN X,XU Z S,WU W Q,et al.Small Structures\[J\],2020,1(3): 2000029. \[58\]SHAN X Y,ZHAO C Y,WANG X N,et al.Advanced Science\[J\],2022,9(6): 2104632. \[59\]YANG J,Hu L X,SHEN L F,et al.Fundamental Research\[J/OL\],2022.(2022-07-25).https://doiorg/101016/jfmre202206019 \[60\]MAIER P,HARTMANN F,DIAS M X S,et al.Applied Physics Letters\[J\],2016,109(2): 023501. \[61\]ZHOU Y,YEW K S,ANG D S,et al.Applied Physics Letters\[J\],2015,107(7): 072107. \[62\]ZHU X J,LU W D.ACS Nano\[J\],2018,12(2): 1242-1249. \[63\]ZHOU F C,LIU Y H,SHEN X P,et al.Advanced Functional Materials\[J\],2018,28(15): 1800080. \[64\]ZHAI Y B,YANG X Q,WANG F,et al.Advanced Materials\[J\],2018,30(49): 1803563. \[65\]CHEN X L,ZHU X,ZHANG S R,et al.Advanced Materials Technologies\[J\],2019,4(3): 1800551. \[66\]LI H,WEN Y Q,LI P W,et al.Applied Physics Letters\[J\],2009,94(16): 163309. \[67\]WANG L,JIN K J,CE C,et al.Applied Physics Letters\[J\],2013,102(25): 252907. \[68\]CHEN Z C,ZHANG Y T,YU Y,et al.Applied Physics Letters\[J\],2019,114(18): 181103. \[69\]HAM S G,CHOI S Y,CHO H I,et al.Advanced Functional Materials\[J\],2019,29(5): 1806646. \[70\]ZHAO X N,WANG Z Q,LI W T,et al.Advanced Functional Materials\[J\],2020,30(17): 1910151. \[71\]CHEN Z L,YU Y,JIN L F,et al.Journal of Materials Chemistry C\[J\],2020,8(6): 2178-2185. \[72\]REN Z J,ZHOU G D,WEI S Q,et al.Physical Chemistry Chemical Physics\[J\],2020,22(5): 2743-2747. \[73\]FU X,ZHANG L,CHO H D,et al.Small\[J\],2019,15(45): 1903809. \[74\]STATHOPOULOS S,TZOUVADAKI T,PRODROMAKIS T.Scientific Reports\[J\],2021,11: 7348. \[75\]ZHOU F C,ZHOU Z,CHEN J W,et al.Nature Nanotechnology\[J\],2019,14: 776-782. \[76\]PEI Y F,LI Z Q,LI B,et al.Advanced Functional Materials\[J\],2022,32(29): 2203454.

备注/Memo

备注/Memo:
收稿日期:2022-09-14修回日期:2023-02-13 基金项目:国家自然科学基金项目(U20A20209,61874125); 浙江省自然科学基金项目(lD19E020001); 环境友好能源材料国家重点实验室开放基金项目(20kfhg09) 第一作者:诸葛霞,女,1979年生,博士,讲师 通讯作者:诸葛飞,男,1975年生,研究员,博士生导师, Email:zhugefei@nimte.ac.cn
更新日期/Last Update: 2023-07-28