[1]魏瑛康,齐山权,王岩,等.电子束选区熔化成形M2高速钢组织和磨损性能的研究[J].中国材料进展,2023,42(11):902-910.[doi:10.7502/j.issn.1674-3962.202211013]
WEI Yingkang,QI Shanquan,WANG Yan,et al.Research on Microstructure and Wear Resistance of M2 High Speed Steel Fabricated by Selective Electron Beam Melting (SEBM)[J].MATERIALS CHINA,2023,42(11):902-910.[doi:10.7502/j.issn.1674-3962.202211013]
点击复制
电子束选区熔化成形M2高速钢组织和磨损性能的研究(
)
中国材料进展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
42
- 期数:
-
2023年第11期
- 页码:
-
902-910
- 栏目:
-
- 出版日期:
-
2023-11-30
文章信息/Info
- Title:
-
Research on Microstructure and Wear Resistance of M2 High Speed Steel Fabricated by Selective Electron Beam Melting (SEBM)
- 文章编号:
-
1674-3962(2023)11-0902-09
- 作者:
-
魏瑛康; 齐山权; 王岩; 张亮亮; 王建勇; 刘世锋
-
西安建筑科技大学 冶金工程学院粉末冶金与增材制造研究所,陕西 西安 710055
- Author(s):
-
WEI Yingkang; QI Shanquan; WANG Yan; ZHANG Liangliang; WANG Jianyong; LIU Shifeng
-
Institute of Powder Metallurgy and Additive Manufacturing, School of Metallurgical Engineering,Xi’an University of Architecture and Technology, Xi’an 710055, China
-
- 关键词:
-
M2高速钢; 电子束选区熔化; 扫描参数; 微观组织; 耐磨性
- Keywords:
-
M2 high speed steel; selective electron beam melting; scanning parameter; microstructure; wear resistance
- 分类号:
-
TG142.1
- DOI:
-
10.7502/j.issn.1674-3962.202211013
- 文献标志码:
-
A
- 摘要:
-
M2高速钢是使用最广泛和最具代表性的工具钢。采用电子束选区熔化(selective electron beam melting, SEBM)增材制造技术成形M2高速钢能有效避免传统铸造组织粗大、碳化物偏析等问题,有望大幅改善高速钢力学、磨损等性能。通过使用不同扫描参数与2种粉床预热温度在316L不锈钢基板上制备了M2高速钢块体试样,重点研究了扫描参数和粉床预热温度对成形M2高速钢致密度及晶粒尺寸、碳化物等显微组织的影响。在最优化参数下,成形M2高速钢致密度达99.7%,平均晶粒尺寸在3~6 μm,碳化物细小且分布较为均匀。通过维氏硬度试验和摩擦磨损试验分析了SEBM成形M2高速钢的硬度与磨损性能。结果表明,在最优化参数下成形的M2高速钢维氏硬度可达1034.2HV0.2,远高于商用M2高速钢刀具(815HV0.2~845HV0.2),同时磨损率仅有(3.58±0.36)×10-5 mm3·N-1·m-1,较回火态锻造母材降低了13.7%。此外,SEBM成形M2高速钢的磨损机制主要为磨粒磨损和粘着磨损。
- Abstract:
-
M2 high speed steel is the most widely used and representative tool steel. The use of selective electron beam melting (SEBM) additive manufacturing technology to form M2 high speed steel can effectively avoid the problems of coarse microstructure and carbide segregation by traditional wrought technology, and is expected to significantly improve its mechanical, wear and other properties. In this paper, M2 high speed steel bulk specimens were prepared on 316L stainless steel substrates with different scanning parameters and two powder bed preheating temperatures, focusing on the effects of scanning parameters and powder bed preheating temperatures on the microstructure of formed M2 high speed steel in terms of density,grain size and carbides. Under the optimized parameters, the densities of the formed M2 high speed steel reached 99.7%, the average grain size was 3~6 μm, and the carbides were small and uniformly distributed. The hardness and wear properties of SEBM formed M2 high speed steel were analyzed by Vickers hardness tests and friction tests. The results show that the Vickers hardness of formed M2 high speed steel with optimized parameters can reach 1034.2HV0.2, which is much higher than that of commercial M2 high speed steel tools (815HV0.2~845HV0.2), and the wear rate is only (3.58±0.36)×10-5mm3·N-1·m-1, which is 13.7% lower than that of tempered wrought counterpart. In addition, the wear mechanism of SEBM formed M2 high speed steel are mainly abrasive wear and adhesive wear.
参考文献/References:
References
[1] Guo Y F,Qi W T,Xia Z B,et al.Journal of Materials Research and Technology[J]2022,16: 1122-1135.
https://doi.org/10.1016/j.jmrt.2021.12.070.
[2] Li J J,Yan X G,Li X Y,et al.Wear[J],2017,376-377:1112-1121.
https://doi.org/10.1016/j.wear.2016.11.041.
[3] K?rner C,et al.International Materials Reviews[J],2016,61(5): 361-377.
https://doi.org/10.1080/09506608.2016.1176289.
[4] 3D Science Valley.The combination of metal 3D printing and machining-a new way to produce non-standard cutting tools in Komet[R/OL].(2016-12-14)[2023-02-25].
http://www.3dsciencevalley.com/?p=7962.
[5] 3D Science Valley.Whitepaper of 3D Printing and Metal Cutting Tools[R/OL].(2019-08-25)[2023-02-27].
http://www.3dsciencevalley.com/?p=16638.
[6] Wang Y M,Voisin T,Mckeown J T,et al.Nat Mater[J]2018,17(1): 63-71.
https://doi.org/10.1038/nmat5021.
[7] Liu Z HZhang D Q,Chua C K,et al.Materials Characterization[J],2013,84:72-80.
https://doi.org/10.1016/j.matchar.2013.07.010.
[8] Kempen KVrancken B,Buls S,et al.Journal of Manufacturing Science and Engineering[J],2014,136(6).
https://doi.org/10.1115/1.4028513.
[9] Uddin S ZMurr L E,Terrazas C A,et al.Additive Manufacturing[J],2018,22:405-415.
https://doi.org/10.1016/j.addma.2018.05.047.
[10] 汤慧萍,王建,逯圣路,等.中国材料进展[J],2015,34(3):225-235.
Tang H P,Wang J,LU S L,et al.Materials China [J],2015,34(3): 225-235.
https://doi.org/10.7502/j.issn.1674-3962.2015.03.05.
[11] Jurisch MKl?den B,Kirchner A,et al.Progress in Additive Manufacturing[J],2020,5(1): 27-32.
https://doi.org/10.1007/s40964-020-00116-8.
[12] 刘世锋,宋玺,王岩,等.中国材料进展[J],2022,41(04):268-274.
Liu S F,Song X,Wang Y,et al.Materials China [J],2022,41(04): 268-274.
https://kns.cnki.net/kcms/detail/61.1473.TG.20220223.2124.002.html.
[13] Kolamroudi M K,Asmael M,Ilkan M,et al.Transactions of the Indian Institute of Metals[J],2021,74(4): 783-790.
https://doi.org/10.1007/s12666-021-02230-9.
[14] Vanmeensel K,Lietaert K,Vrancken B,et al.Additive Manufacturing[J],2018,8: 261-309.
https://doi.org/10.1016/b978-0-12-812155-9.00008-6.
[15] Kirchner A,Kl?den B,Luft J,et al.Powder Metallurgy[J],2015,58(4): 246-249.
https://doi.org/10.1179/0032589915z.000000000244.
[16] Chaus A S,Bra?ík M,Sahul M,et al.Vacuum[J] ,2019,162: 183-198.
https://doi.org/10.1016/j.vacuum.2019.01.041.
[17] Liverani E,Toschi S,Ceschini L,et al.Journal of Materials Processing Technology[J],2017,249: 255-263.
https://doi.org/10.1016/j.jmatprotec.2017.05.042.
[18] Choo HSham K-L,Bohling J,et al.Materials & Design[J],2019,164: 107534.
https://doi.org/10.1016/j.matdes.2018.12.006.
[19] Attar HCalin M,Zhang L C,et al.Materials Science and Engineering: A[J],2014,593: 170-177.
https://doi.org/10.1016/j.msea.2013.11.038.
[20] Leung C L ATosi R,Muzangaza E,et al.Materials & Design[J],2019,174.
https://doi.org/10.1016/j.matdes.2019.107792.
[21] Liu Q XLu D P,Lu L,et al.Journal of Iron and Steel Research[J],2015,22(3): 245-249.
https://doi.org/10.1016/s1006-706x(15)60037-1.
[22] 杨一俏,赵骧[J],2019,48(20):73-76.
Yang Y Q,Zhao X,et al.Hot Working Technology[J],2019,48(20): 73-76.
https://doi.org/10.14158/j.
[23] Lu LHou L G,Zhang J X,et al.Materials Characterization[J],2016,117: 1-8.
https://doi.org/10.1016/j.matchar.2016.04.010.
[24] Chen NLuo R,Xiong H,et al.Materials Science and Engineering: A[J],2020,771: 138628.
https://doi.org/10.1016/j.msea.2019.138628.
[25] 陈翔,张德强,孙文强,等.表面技术[J],2019,48(11):236-243+251.
Chen X,Zhang D Q,Sun W Q,et al.Surface Technology[J],2019,48(11): 236-243+251.
https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.11.025.
[26] Luan Y,Song N,Bai Y,et al.Journal of Materials Processing Technology[J],2010,210(3): 536-541.
https://doi.org/10.1016/j.jmatprotec.2009.10.017.
[27] Rahman N UCapuano L,Rooij M B D,et al.Surface and Coatings Technology[J],2019,364: 115-126.
https://doi.org/10.1016/j.surfcoat.2019.02.044.
[28] Liu S F,Li Y Z,Wang Y,et al.Journal of Materials Research and Technology[J],2022,19: 1821-1835.
备注/Memo
- 备注/Memo:
-
收稿日期:2022-11-21修回日期:2023-03-08
基金项目:中国博士后科学基金项目(2021M702554);陕西省自然科学基金项目(2022JM-259,2022JQ-367);国家自然科学基金青年项目(52104341)
第一作者:魏瑛康,男,1992年生,讲师,
Email:weiyingkang@xaua.edu.cn
通讯作者:刘世锋,男,1978年生,教授,博士生导师,
Email:liushifeng66@126.com
更新日期/Last Update:
2023-10-25