[1]李赞,张荻.金属基复合材料的内源性效应[J].中国材料进展,2023,42(08):605-613.[doi:10.7502/j.issn.1674-3962.202302003]
 LI Zan,ZHANG Di.The Self-Stimulation Effect for High-Performance Metal Matrix Composites[J].MATERIALS CHINA,2023,42(08):605-613.[doi:10.7502/j.issn.1674-3962.202302003]
点击复制

金属基复合材料的内源性效应()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第08期
页码:
605-613
栏目:
出版日期:
2023-08-31

文章信息/Info

Title:
The Self-Stimulation Effect for High-Performance Metal Matrix Composites
文章编号:
1674-3962(2023)08-0605-09
作者:
李赞张荻
上海交通大学 金属基复合材料国家重点实验室,上海 200240
Author(s):
LI Zan ZHANG Di
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
金属基复合材料力学性能功能特性复合设计
Keywords:
metal matrix composites mechanical property functional property composite design
分类号:
TB33
DOI:
10.7502/j.issn.1674-3962.202302003
文献标志码:
A
摘要:
复合化是实现金属材料高性能化、多功能化的有效途径。通过在金属基体中引入高性能增强相形成金属基复合材料,可显著提升基体本征性能,实现传统金属材料无法比拟的高比强度、高比刚度、低膨胀等优异力学与功能特性。然而,受限于其工程化材料属性以及常规复合效应,金属基复合材料的进一步发展面临巨大挑战。突破传统复合性能上限需要发展复合新理念与新途径,在此提出“金属基复合材料的内源性效应”设计新原理,目的是通过复合组分之间的强相互影响,获得超越线性叠加的非常规复合效应。从金属基复合材料力学性能与功能特性2个方面出发,以典型研究结果为例综述了内源性复合实现金属基复合材料超优性能的基本途径及其关键作用,最后进行了总结与展望,为新型高性能金属基复合材料的设计和创制提供新思路。
Abstract:
One of the most important way to improve the properties of metals is forming composites. Metal matrix composites possess the superiorities in mechanical and functional properties, such as high specific strength, high specific stiffness, and low thermal expansion coefficient, making them be ideal candidates in many cutting-edge-technologies. The incorporation of high-performance reinforcement in metal matrix will, undoubtedly, lead to significant increments in mechanical and functional properties. However, as constrained by the nature of engineering materials as well as the traditional design approaches, metal matrix composites are facing the challenges of limited development motivation. New design strategies and routes must be developed to address this issue. We here come up with a concept of “self-stimulation effect” in metal matrix composites to create new deformation and physical features via the composite effect, leading to unprecedented properties that well beyond those obtained from the traditional “rule-of-mixtures”. We review some of the literatures on this field, mainly focus on mechanical and functional properties, to demonstrate the crucial role of self-stimulation on the achievement of excellent properties.This review is ended with some in-depth discussion on the further development of metal matrix composites.

参考文献/References:

\[1\]CLYNE T, WITHERS P. An Introduction to Metal Matrix Composites\[M\]. Cambridge: Cambridge University Press, 1995. \[2\]MORTENSEN A, LLORCA J. Annual Review of Materials Research\[J\], 2010, 40: 243-270. \[3\]CHAWLA K K. Composite Materials: Science and Engineering\[M\]. New York: Springer Science & Business Media, 2012. \[4\]SLIPENYUK A, KUPRIN V, MILMAN Y, et al. Acta Materialia\[J\], 2006, 54(1): 157-166. \[5\]张荻, 张国定, 李志强. 中国材料进展\[J\], 2010, 29(4): 1-7. ZHANG D, ZHANG G D, LI Z Q. Materials China\[J\], 2010, 29(4): 1-7. \[6\]武高辉, 匡泽洋. 中国工程科学\[J\], 2020, 22(2): 79-90. WU G H, KUANG Z Y. China Engineering Science\[J\], 2020, 22(2): 79-90. \[7\]LI H, ZONG H, LI S, et al. Nature\[J\], 2022, 604(7905): 273-279. \[8\]GAO J, JIANG S, ZHANG H, et al. Nature\[J\], 2021, 590(7845): 262-267. \[9\]YANG T, ZHAO Y L, TONG Y, et al. Science\[J\], 2018, 362(6417): 933-937. \[10\]ZHANG D, QIU D, GIBSON M A, et al. Nature\[J\], 2019, 576(7785): 91-95. \[11\]DING Q, ZHANG Y, CHEN X, et al. Nature\[J\], 2019, 574(7777): 223-227. \[12\]ZOU B, WANG L, ZHANG Y, et al. Materials Research Letters\[J\], 2023, 11(5): 360-366. \[13\]肖伯律, 刘振宇, 张星星,等. 中国材料进展\[J\], 2016, 35(9): 666-673. XIAO B L, LIU Z Y, ZHANG X X, et al. Materials China\[J\], 2016, 35(9): 666-673. \[14\]LI Z, GUO Q, LI Z Q, et al. Nano Letters\[J\], 2015, 15(12): 8077-8083. \[15\]XIONG D B, CAO M, GUO Q, et al. ACS Nano\[J\], 2015, 9(7): 6934-6943. \[16\]ZHANG X, XU Y, WANG M, et al. Nature Communications\[J\], 2020, 11: 2775. \[17\]ZHANG X, ZHAO N, HE C. Progress in Materials Sciences\[J\], 2020, 113: 100672. \[18\]HUANG L J, GENG L, LI A B, et al. Scripta Materialia\[J\], 2009, 60(11): 996-999. \[19\]HUANG L J, GENG L, PENG H X, et al. Scripta Materialia\[J\], 2011, 64(9): 844-847. \[20\]HUANG L J, GENG L, PENG H X. Progress in Materials Sciences\[J\], 2015, 71: 93-168. \[21\]ASHBY M F. Philosophicla Magazine\[J\], 1970, 21: 399-424. \[22\]FU X, TAN Z, MIN X, et al. Materials Research Letters\[J\], 2021, 9(1): 50-57. \[23\]XU R, TAN Z, FAN G, et al. International Journal of Plasticity\[J\], 2019, 120: 278-295. \[24\]CHEN L Y, XU J Q, CHOI H, et al. Nature\[J\], 2015, 528(7583): 539-543. \[25\]LI X, LU L, LI J, et al. Nature Review Materials\[J\], 2020, 5: 706-723. \[26\]FANG T H, LI W L, TAO N R, et al. Science\[J\], 2011, 331(6024): 1587-1590. \[27\]MEYERS M A, MISHRA A, BENSON D J. Progress in Materials Sciences\[J\], 2006, 51(4): 427-556. \[28\]LI Z, ZHANG Y, ZHANG Z, et al. Nature Communications\[J\], 2022, 13: 5581. \[29\]WANG Y, CHEN M, ZHOU F, et al. Nature\[J\], 2002, 419(6901): 912-915. \[30\]LI D Y, FAN G H, HUANG X X, et al. Acta Materialia\[J\], 2021, 206: 116627. \[31\]CHENG Z, BU L, ZHANG Y, et al. Acta Materialia\[J\], 2023, 246: 118673. \[32\]CHENG Z, BU L, ZHANG Y, et al. Proceedings of the National Academy of Sciences of the USA\[J\], 2022, 119: e2116808119. \[33\]CHENG Z, ZHOU H, LU Q, et al. Science\[J\], 2018, 362(6414): eaau1925. \[34\]MOHAMMED S M, CHEN D L. Advanced Engineering Materials\[J\], 2020, 22: 1901176. \[35\]LI Z, WANG H, GUO Q, et al. Nano Letters\[J\], 2018, 18(10): 6255-6264. \[36\]HERZOG D, SEYDA V, WYCISK E, et al. Acta Materialia\[J\], 2016, 117: 371-392. \[37\]WANG L, ZHANG Y, CHIA H Y, et al. npj Computational Materials\[J\], 2022, 8: 22. \[38\]ZHAO C, FEZZAA K, CUNNINGHAM R W, et al. Scientific Reports\[J\], 2017, 7: 3602. \[39\]RAPPAZ M, DREZET J M, GREMAUD M. Metallurgical and Materials Transactions A\[J\], 1999, 30A: 449-455. \[40\]MARTIN J H, YAHATA B D, HUNDLEY J M, et al. Nature\[J\], 2017, 549(7672): 365-369. \[41\]CAO M, XIONG D, YANG L, et al. Advanced Functional Materials\[J\], 2019, 29: 1806792. \[42\]MEHTA R, CHUGH S, CHEN Z. Nano Letters\[J\], 2015, 15(3): 2024-2030. \[43\]YEH C H, MEDINA H, LU C C, et al. ACS Nano\[J\], 2014, 8(1): 275-282. \[44\]GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Physical Review Letters\[J\], 2008, 101: 026803. \[45\]SUTTER P, SADOWSKI J T, SUTTER E. Physical Review B\[J\], 2009, 80: 245411. \[46\]STRADI D, BARJA S, DAZ C, et al. Physical Review B\[J\], 2012, 85: 121404. \[47\]LARCIPRETE R, ULSTRUP S, LACOVIG P, et al. ACS Nano\[J\], 2012, 6(11): 9551-9558. \[48\]JIANG T, ZHANG X, VISHWANATH S, et al. Nanoscale\[J\], 2016, 8: 10993-11001. \[49\]HOPKINS P E, BARAKET M, BARNAT E V, et al. Nano Letters\[J\], 2012, 12(2): 590-595. \[50\]HAN H, ZHANG Y, WANG N, et al. Nature Communications\[J\], 2016, 7: 11281. \[51\]LEONG W S, NAI C T, THONG J T. Nano Letters\[J\], 2014, 14(7): 3840-3847. \[52\]GOLI P, NING H, LI X, et al. Nano Letters\[J\], 2014, 14(3): 1497-1503. \[53\]YAO Y, DONG Q, BROZENA A, et al. Science\[J\], 2022, 376(6589): abn3103. \[54\]RAO Z, TUNG P Y, XIE R, et al. Science\[J\], 2022, 378(6615): abo4940. \[55\]PARK H K, KIM Y, JUNG J, et al. Acta Materialia\[J\], 2023, 244: 118583.

备注/Memo

备注/Memo:
收稿日期:2023-02-04 基金项目:国家自然科学基金面上项目(52171142);国家自然科学基金重大研究计划项目(52192595) 第一作者:李赞, 男, 1989 年生, 副教授, 博士生导师, Email:njulizan@sjtu.edu.cn
更新日期/Last Update: 2023-07-28