[1]周涛,李超,陈传,等.500 kV限流器高温超导磁体的制作与测试[J].中国材料进展,2023,42(11):911-917.[doi:10.7502/j.issn.1674-3962.202304025]
 ZHOU Tao,LI Chao,CHEN Chuan,et al.Manufacture and Test of 500 kV Superconducting Magnet for Superconductive Fault Current Limiter System[J].MATERIALS CHINA,2023,42(11):911-917.[doi:10.7502/j.issn.1674-3962.202304025]
点击复制

500 kV限流器高温超导磁体的制作与测试()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第11期
页码:
911-917
栏目:
出版日期:
2023-11-30

文章信息/Info

Title:
Manufacture and Test of 500 kV Superconducting Magnet for Superconductive Fault Current Limiter System
文章编号:
1674-3962(2023)11-0911-07
作者:
周涛1李超1陈传1马韬2宋萌3
1.西安聚能超导磁体科技有限公司,陕西 西安 710016 2.北京交通大学电气工程学院,北京 100871 3.广东电网有限责任公司 电力科学研究院,广东 广州 510080
Author(s):
ZHOU Tao1LI Chao 1CHEN Chuan1MA Tao2SONG Meng3
1. Xi’an Superconducting Magnet Technologies Co., Ltd., Xi’an 710016, China 2. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100871, China 3. Guangdong Power Grid Development Research Institute Co., Ltd.,Guangzhou 510080, China
关键词:
超导磁体超导限流器杜瓦励磁失超运行电流高温超导
Keywords:
superconducting magnets superconductive fault current limiter (SFCL)cryostat ramp up quenchoption currenthigh temperature superconducting(HTS)
分类号:
TM26+5
DOI:
10.7502/j.issn.1674-3962.202304025
文献标志码:
A
摘要:
超导限流器是对超高压输电线路短路故障电流实现快速、有效限制的一种新型电力装置。近年来随着国民经济的发展,用电负荷增长和供电可靠性需求增加,电网短路电流水平已经逼近甚至超过传统开关设备的开断能力,成为超高压电网发展和安全、稳定运行的重要制约因素之一。然而,电网结构调整等传统限流措施降低了电网的安全性和灵活性,亟需研制适用于超高压电网的限流装置。超导限流器集短路故障检测、触发和限流功能于一身,是电力系统最理想的限流装置。依托高电压等级限流器用超导磁体系统的研制项目,完成500 kV限流器用高温超导磁体系统制作与测试工作。该超导磁体的室温孔径为1660 mm,总高度为1960 mm,液氮量为2000 L,中心最大磁场为0.45 T,额定励磁安匝数为468 000安匝,由3组线圈共计88个双饼组成,运行电流分别为220 A(YBCO线圈)/1000 A(Bi2223线圈)/220 A(YBCO线圈),杜瓦注入液氮后抽空减压至72 K稳定运行。经过绕制、接线、组装、焊接、检测等工序,完成磁体系统集成,降温后进行整体测试,一次性励磁成功,没有失超。整个系统绝缘等级大于10 kV、真空漏率优于10-6(Pa·L)/s、液氮蒸发量小于70 L/d,指标均达到设计目标。
Abstract:
The superconductive fault current limiter (SFCL) is an innovative electric power equipment designed to rapidly and effectively mitigate short circuits in high voltage transmission systems. With the rapid economic development of our country, there has been a growing demand for increased power load and reliability. Consequently, this has led to the generation of larger short circuit currents within the electric grid, surpassing the capacity of existing switch equipment which poses a significant constraint on safe and stable operation. As the most advanced electric power equipment available, the SFCL not only detects and interrupts power flow during short circuits but also effectively mitigates the magnitude of the short circuit current. In this study, we have designed, fabricated, and experimentally evaluated a superconducting magnet specifically tailored for a high voltage SFCL. The magnet features a roomtemperature bore with dimensions of 1660 mm in diameter and 1960 mm in length, incorporating a liquid nitrogen vessel with a capacity of 2000 L.Notably, the central peak field within the roomtemperature bore reaches an impressive value of 0.45 T. The magnet consists of 88 high temperature superconducting (HTS) double pancake coils, with 468,000 ampere turns.These coils are strategically divided into three segments operating at distinct currents: namely, 220 A for YBCO coils followed by Bi2223 coils operating at 1000 A and concluding with another set of YBCO coils operating at 220 A. After undergoing multiple processes, including winding, terminal wire installation, welding, and assembly, the magnet is subjected to a rigorous test at 72 K. The results of the test align with the theoretical design specifications and exhibit an insulation grade exceeding 10 kV. Additionally, meticulous investigation reveals that the nitrogen evaporation rate remains below 70 L/d, Moreover, it has been determined that the cryostat leakage is less than 10-6(Pa·L)/s, thereby confirming the resounding success of this superconducting magnet.

参考文献/References:

\[1\]周廉,甘子钊.中国高温超导材料及应用发展战略研究[M].北京:化学工业出版社,2007:79. ZHOU L, GAN Z Z. Research on High Temperature Superconducting Materials and Application Development Strategy in China\[M\]. Beijing: Chemical Industry Press, 2007:79. \[2\]王常骐,李斌,信赢,等.电力系统自动化\[J\],2021,45(18):179-186. WANG C Q, LI B, XIN Y, et al. Automation of Electric Power Systems\[J\], 2021, 45(18): 179-186. \[3\]宋国兵,陶然,李斌,等. 电力系统自动化[J], 2017, 41(12):2-12. SONG G B, TAO R, LI B, et al. Power System Automation\[J\],2017,41 (12) : 2-12. \[4\]XXIN Y, GONG W, NIU X, et al. IEEE Transactions on Applied Superconductivity\[J\], 2007, 17(2): 1760-1763. \[5\]GUO W Y. Cryogenics[J], 2021, 116: 103296. \[6\]唐诵,贾冠龙,张成浩,等.电力系统自动化[J], 2020, 44(11):152-168. TANG S, JIA G L, ZHANG C H, et al. Automation of Electric Power Systems\[J\], 2020, 44(11): 152-168. \[7\]王科,曹昆南,胡南南,等. 高温超导限流器[M]. 北京:机械工业出版社,2018: 10. WANG K, CAO K N, HU N N, et al. High Temperature Superconducting Current Limiter\[M\]. Beijing: China Machine Press, 2018: 10. \[8\]YU M Z, HONG H F, CHEN H X. 2019 IEEE Innovative Smart Grid TechnologiesAsia[C], Chengdu:The IEEE PES ISGT Asia , 2019: 2613-2618. \[9\]周涛,李超,宋萌,等.一种高温超导双带双饼的绕制方法:CN108461275B[P].2020-7-21. ZHOU T, LI C, SONG M, et al. A Winding Method For High Temperature Superconducting Double Tape Double Cake: CN10846 1275B[P].2020-7-21. \[10\]杜卓越,陈玉泉,吴巍等. 稀有金属材料与工程\[J\], 2022, 51(10): 3900-3904. DU Z Y, CHEN Y Q, WU W, et al. Rare Metal Materials and Engineering\[J\], 2022, 51(10): 3900-3904. \[11\]CHEN H,LIU X M,LI P Y,et al.2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices\[C\]. Tianjin:IEEE and University of Electronic Science and Technology of China,2020:1-2. \[12\]沈阳变压器研究院股份有限公司.电力变压器第2部分:液浸式变压器的温升:GB/T 1094.2—2013[S].北京:中国标准出版社,2014. Shenyang Transformer Research Institute Co, Ltd. Power TransformersPart 2: Temperature Rise of LiquidImmersed Transformers: GB/T 10942—2013\[S\]. Beijing: Standards Press of China,2014. \[13\]王开松 ,宋云涛 ,赵韩,等. 低温与超导\[J\],2007,35(1):28-30. WANG K S, SONG Y T, ZHAO H, et al. Cryogenic and Superconducting\[J\],2007,35(1):28-30. \[14\]Physics and Engineering of HighPerformance Electron Storage Rings and Application of Superconducting Technology\[C\]. Beijing:Superconducting magnets for Accelerators GSI,1999:67-69. \[15\]LVOVSKY Y. STAUTNER E W, ZHANG T. Superconductor Science & Technology\[J\], 2013, 26(9) : 70-71.

备注/Memo

备注/Memo:
收稿日期:2023-04-27修回日期:2023-08-02 基金项目:陕西省重点研发项目(2017GY-50) 第一作者:周涛,男,1985年生,高级工程师, Email:zhoutao@c.wst.com
更新日期/Last Update: 2023-10-25