[1]郭大伟,朱玲英,顾宁.磁性纳米颗粒作为基因递送载体的研究进展[J].中国材料进展,2013,(10):605-610.[doi:10.7502/j.issn.1674-3962.2013.10.05]
 Guo Dawei,Zhu lingying,Gu Ning.Progress on magnetic nanoparticles as a gene delivery carrier[J].MATERIALS CHINA,2013,(10):605-610.[doi:10.7502/j.issn.1674-3962.2013.10.05]
点击复制

磁性纳米颗粒作为基因递送载体的研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期数:
2013年第10期
页码:
605-610
栏目:
特约研究论文
出版日期:
2013-10-31

文章信息/Info

Title:
Progress on magnetic nanoparticles as a gene delivery carrier
作者:
郭大伟朱玲英顾宁
(东南大学 生物科学与医学工程学院,江苏 南京 210096)
Author(s):
Guo Dawei Zhu lingying Gu Ning
(School of Biology and Medicine Engineering, Southeast University, Nanjing 210096, Jiangsu)
关键词:
磁性纳米颗粒基因递送磁转染载体
DOI:
10.7502/j.issn.1674-3962.2013.10.05
摘要:
基因递送是实现基因治疗的关键,基因的有效递送有赖于发展有效的、安全的递送载体。理想的基因递送载体应具备递送效率高、细胞毒性低、对正常细胞生理影响小以及易于使用和重复等特性。纳米材料独特的理化性质使其在药物和基因递送领域具有潜在的应用。磁性纳米颗粒兼具纳米效应和超顺磁性,是一种非常有应用前景的载体材料。本文简要介绍了纳米颗粒的类型、粒径、表面特性和外加磁场等因素对磁性纳米颗粒基因递送的影响,并就磁性纳米颗粒作为基因递送载体的应用和面临的主要挑战进行了总结和展望。
Abstract:
Effective gene delivery is critical for gene therapy, and depends on the development of effective and safe delivery carrier. Ideal carrier of gene delivery should possess plenty of properties, including high delivery efficiency, low cytotoxicity, less effect on physiological effect of normal cells, and ease of use and duplication. Nanomaterials have potential applications in the field of drug and gene delivery due to unique physical and chemical properties. Magnetic nanoparticles with nano-effect and superparamagnetic properties are very promising delivery carrier. We briefed the key factors affecting the gene delivery of MNPs, including the types, size and surface properties of nanoparticles and external magnetic field. The current applications and challenges of MNPs in gene delivery was summarized and discussed.

参考文献/References:

参考文献 References

[1] Ortiz R, Melguizo C, Prados J, et al. New gene therapy strategies for cancer treatment: a review of recent patents [J]. Recent Pat Anticancer Drug Discov. 2012,7 (3): 297-312.

[2] Martinez T, Wright N, Lopez-Fraga M, et al. Silencing human genetic diseases with oligonucleotide-based therapies [J]. Hum Genet. 2013, 132 (5): 481-493.

[3] Evans C H, Ghivizzani S C, Robbins P D. Arthritis gene therapy and its tortuous path into the clinic [J]. Transl Res. 2013,161 (4): 205-216.

[4] Southerland K W, Frazier S B, Bowles D E, et al. Gene therapy for the prevention of vein graft disease [J]. Transl Res. 2013, 161 (4): 321-338.

[5] Thomas C E, Ehrhardt A, Kay M A. Progress and problems with the use of viral vectors for gene therapy [J]. Nat Rev Genet. 2003 (4): 346-358.

[6] Wang W, Li W, Ma N, et al. Non-viral gene delivery methods [J]. Curr Pharm Biotechnol. 2013,14 (1): 46-60.

[7] Li S D, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery [J]. Gene Ther. 2006,13 (18): 1313-1319.

[8] Mellott A J, Forrest M L, Detamore M S. Physical non-viral gene delivery methods for tissue engineering [J]. Ann Biomed Eng. 2013, 41 (3): 446-468.

[9] De Laporte L, Cruz Rea J, Shea L D. Design of modular non-viral gene therapy vectors [J]. Biomaterials. 2006, 27 (7): 947-954.

[10] Jin S, Ye K. Nanoparticle-mediated drug delivery and gene therapy [J]. Biotechnol Prog. 2007, 23 (1): 32-41.

[11] Vijayanathan V, Thomas T, Thomas T J. DNA nanoparticles and development of DNA delivery vehicles for gene therapy [J]. Biochemistry. 2002, 41 (48): 14085-14094.

[12] Katragadda C S, Choudhury P K, Murthy P N. Nanoparticles as non-viral gene delivery vectors [J]. Indian J Pharm Educ Res. 2010, 44 (2): 109-120.

[13] Xiang J J, Nie X M, Tang J Q, et al. In vitro gene transfection by magnetic iron oxide nanoparticles and magnetic field increases transfection efficiency [J]. Zhonghua Zhong Liu Za Zhi. 2004, 26 (2): 71-74.

[14] Fouriki A, Farrow N, Clements M A, et al. Evaluation of the magnetic field requirements for nanomagnetic gene transfection [J]. Nano Rev. 2010, (1): 5167.

[15] Delyagina E, Li W, Ma N, et al. Magnetic targeting strategies in gene delivery. Nanomedicine [J]. 2011, 6 (9): 1593-1604.

[16] Schwerdt J I, Goya G F, Calatayud M P, et al. Magnetic field-assisted gene delivery: achievements and therapeutic potential [J]. Curr Gene Ther. 2012, 12 (2): 116-126.

[17] Makarewicza M, PodsiadAlyb M, BaAlandaa M. Magnetic investigation of carbon coated Co-, Ni- and Fe-nanoparticles [J]. Acta Phys Pol A. 2009, 115 (2): 568-571.

[18] Tomitaka A, Kobayashi H, Yamada T, et al. Magnetization and self-heating temperature of NiFe2O4 nanoparticles measured by applying ac magnetic field [J]. J Phys: Conf Ser. 2010, 200 (12): 122010.

[19] Cho W S, Duffin R, Poland C A, et al. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs [J]. Nanotoxicology. 2012, 6 (1): 22-35.

[20] George S, Xia T, Rallo R, et al. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials [J]. ACS Nano. 2011, 5 (3): 1805-1817.

[21] Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine [J]. Nanoscale Res Lett. 2012, 7 (1): 144.

[22] Kami D, Takeda S, Itakura Y, et al. Application of magnetic nanoparticles to gene delivery [J]. Int J Mol Sci. 2011, 12 (6): 3705-3722.

[23] Chen Z, Yin J J, Zhou Y T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity [J]. ACS Nano. 2012, 6 (5): 4001-4012.

[24] Morishita N, Nakagami H, Morishita R, et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector [J]. Biochem Biophys Res Commun. 2005, 334 (4): 1121-1126.

[25] Pan B, Cui D, Sheng Y, et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system [J]. Cancer Res. 2007, 67 (17): 8156-8163.

[26] Kievit F M, Veiseh O, Bhattarai N, et al. PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection [J]. Adv Funct Mater. 2009, 19 (14): 2244-2251.

[27] Lungwitz U, Breunig M, Blunk T, et al. Polyethylenimine-based non-viral gene delivery systems [J]. Eur J Pharm Biopharm. 2005, 60 (2): 247-266.

[28] Lu Yanming (卢艳敏), Cui Haixing (崔海信), Cui Jinhui (崔金辉), 等. 磁性纳米颗粒作为基因转染载体的研究 [J]. Biotechnology Bulletin (生物技术通报). 2012, (8): 199-204.

[29] Wang B, Zhang S, Cui S, et al. Chitosan enhanced gene delivery of cationic liposome via non-covalent conjugation [J]. Biotechnol Lett. 2012, 34 (1): 19-28.

[30] Kuang Y, Yuan T, Zhang Z, et al. Application of ferriferous oxide modified by chitosan in gene delivery [J]. J Drug Deliv. 2012, (2012): 920764.

[31] Chen Chaoting (陈朝婷), Gao Feng (高峰), 陆平 (Lu Ping), 等. 磁性壳聚糖纳米介导 eNOS 基因转染受损平滑肌细胞初探 [J]. Journal of Southeast University (Medical Science Edition) (东南大学学报(医学版)). 2011, 30 (6): 827-831.

[32] Zhou Y, Tang Z, Shi C, et al. Polyethylenimine functionalized magnetic nanoparticles as a potential non-viral vector for gene delivery [J]. J Mater Sci Mater Med. 2012, 23 (11): 2697-2708.

[33] Prijic S, Prosen L, Cemazar M, et al. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma [J]. Biomaterials. 2012, 33 (17): 4379-4391.

[34] Zhang Z B, Song L N, Dong J L, et al. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers [J]. J Nnanopart Res. 2013, 15 (4): 1-11.

[35] Chouly C, Pouliquen D, Lucet I, et al. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution [J]. J Microencapsul. 1996, 13 (3): 245-255.

[36] Yan K, Li P, Zhu H, et al. Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment [J]. RSC Adv. 2013, 3 (27): 10598-10618.

[37] Ruiz A, Salas G, Calero M, et al. Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents [J]. Acta Biomater. 2013, 9 (5): 6421-6430.

[38] Huang J, Bu L, Xie J, et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles [J]. ACS Nano. 2010, 4 (12): 7151-7160.

[39] Kamei K, Mukai Y, Kojima H, et al. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery [J]. Biomaterials. 2009, 30 (9): 1809-1814.

[40] Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery [J]. Gene Ther. 2006, 13 (4): 283-287.

[41] Kuang Y, Yuan T, Zhang Z, et al. Application of ferriferous oxide modified by chitosan in gene delivery [J]. J Drug Deliv. 2012, (2012): 920764.

[42] Zhang H, Lee M Y, Hogg M G, et al. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles [J]. ACS Nano. 2010, 4 (8): 4733-4743.

[43] McBain S C, Griesenbach U, Xenariou S, et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays [J]. Nanotechnology. 2008, 19 (40): 405102.

[44] Kamau S W, Hassa P O, Steitz B, et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field [J]. Nucleic Acids Res. 2006, 34 (5): e40.

[45] Jenkins S I, Pickard M R, Granger N, et al. Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies [J]. ACS Nano. 2011, 5 (8): 6527-6538.

[46] Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects [J]. Adv Drug Deliv Rev. 2011, 63 (14-15): 1300-1331.

[47] Adams C F, Pickard M R, Chari D M. Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields [J]. Nanomedicine. 2013, 9 (6): 737-741.

[48] Hu S H, Hsieh T Y, Chiang C S, et al. Surfactant-Free, Lipo-Polymersomes Stabilized by Iron Oxide Nanoparticles/Polymer Interlayer for Synergistically Targeted and Magnetically Guided Gene Delivery [J]. Adv Healthc Mater. 2013 doi: 10.1002/adhm.201300122.

[49] Kong S D, Lee J, Ramachandran S, et al. Magnetic targeting of nanoparticles across the intact blood-brain barrier [J]. J Control Release. 2012, 164 (1): 49-57.

[50] Kuang Y, An S, Guo Y, et al. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting [J]. Int J Pharm. 2013, 454 (1): 11-20.

[51] Wang X, Chen B, Yang X, et al. Functionalized superparamagnetic nanoparticles for highly-efficient gene delivery [J]. J Nanosci Nanotechnol. 2013, 13 (2): 746-750.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(59493300);教育部博士点基金资助项目(9800462)_____________________ 收稿日期: 2000-03-11;修订日期:2000-03-06
更新日期/Last Update: 2013-10-11