[1]赵雷,刘佳,任群,等.流体微探力学性能高通量表征方法[J].中国材料进展,2023,42(05):406-414.[doi:10.7502/j.issn.1674-3962.202102004]
 ZHAO Lei,LIU Jia,REN Qun,et al.High Throughput Characterization of Fluid-Micro-Test Mechanical Property[J].MATERIALS CHINA,2023,42(05):406-414.[doi:10.7502/j.issn.1674-3962.202102004]
点击复制

流体微探力学性能高通量表征方法()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第05期
页码:
406-414
栏目:
出版日期:
2023-05-30

文章信息/Info

Title:
High Throughput Characterization of Fluid-Micro-Test Mechanical Property
文章编号:
1674-3962(2023)05-0406-09
作者:
赵雷1刘佳1任群2杨丽3王辉2沈学静2贾云海2王海舟12
1. 钢铁研究总院 北京材料基因工程高精尖创新中心,北京 100081 2. 钢研纳克检测技术股份有限公司 金属材料表征北京市重点实验室,北京 100081 3. 中国钢研科技集团数字化研发中心,北京 100081
Author(s):
ZHAO Lei1 LIU Jia1 REN Qun2 YANG Li3 WANG Hui2SHEN Xuejing2 JIA Yunhai2 WANG Haizhou12
1. Beijing Advanced Innovation Center for Materials Genome Engineering, Central Iron & Steel Research Institute,Beijing 100081, China 2. Beijing Key Laboratory of Metallic Materials Characterization, The NCS Testing Technology Co, Ltd,Beijing 100081, China 3. Material Digital R&D Center, Central Iron & Steel Research Institute, Beijing 100081, China
关键词:
金属材料流体微探冷等静压表面形变微观硬度
Keywords:
metal material fluid-micro-test cold isostatic pressingsurface deformationmicrohardness
分类号:
TG115. 5+ 1
DOI:
10.7502/j.issn.1674-3962.202102004
文献标志码:
A
摘要:
介绍一种流体微探力学性能(硬度)高通量表征方法。由于不同材料特征组织结构的差异,当具有相同压力的水流体作用在不同材料的平整表面上时(类似于采用比纳米压痕更小的压头加载于材料表面),每种材料所产生的微形变也有所差异,采用高精度表面形貌轮廓仪测量整个材料表面的形变量及分布,基于拉依达准则对形变量数据进行统计,解析材料的表面微形变量与硬度性能的相关性。实验采用有限元方法模拟了具有不同硬度的两相组织在等压水流体中的变形行为,并选取桥梁钢、高碳铬轴承钢、铸态镍基高温合金、镍基单晶高温合金和锻态镍基高温合金共5种具有不同特征组织和硬度的金属材料验证,结果表明,5种材料的表面形变量与显微硬度值的线性相关系数达到0.9948,该表征方法分辨率可以达到纳米级,可视为硬度性能的无损检测方法。
Abstract:
In this paper, a new high throughput characterization of fluid-micro-test mechanical property is studied. The flat surfaces of different materials will deform slightly when loaded with the same pressure fluid, like using a smaller indenter than nanoindentation to load on the material surface. The entire micro deformation of the material surface is measured exactly by a 3D surface profiler, then the deformation values can be analyzed with Pauta criterion. Finally, the correlation between surface micro deformation and microhardness of different materials can be established. Finite element analysis (ABAQUS) is used to simulate the deformation behavior of two phases with different hardness under isostatic pressing. Five kinds of metal materials with different hardness and microstructures, including bridge steel, high carbon chromium bearing steel, as cast nickel base superalloy, nickel base single crystal superalloy and forged nickel base superalloy, are tested through a cold isostatic pressing. The relationships mathematical model of surface micro deformation and microhardness of 5 samples is established, and the correlation coefficient is 0. 9948. The resolution of this method can reach the nanometer level,which can be regarded as a non-destructive testing method of hardness.

参考文献/References:

[1] 李建国, 黄瑞瑞, 张倩, 等. 力学学报[J], 2020, 52(2): 333-359. LI J G, HUANG R R, ZHANG Q, et al. Chinese Journal of Theoretical and Applied Mechanics[J], 2020, 52(2): 333-359. [2] MANAHAN M P, ARGON A S, HARLING O K. Journal of Nuclear Materials[J], 1981, 104(C): 1545-1550. [3] CEN Workshop Agreement. Small Punch Test Method for Metallic Materials, Part B: A Code of Practice for Small Punch Testing for Tensile and Fracture Behavior: CWA 15267[S]. Brussels: CEN, 2006. [4] ASTM. Standard Test Method for Small Punch Testing of Ultra-High Molecular Weight Polyethene Used in Surgical Implants: F2183-02 [S]. USA: ASTM, 2002. [5] TAKAHASHI H, SHOJI T, MAO X, et al. Recommended Practice for Small Punch (SP) Testing of Metallic Materials (Draft): JAERIM88- 172[S]. Japan: Japan Atomic Energy Research Institute, 1988. [6] 凌祥, 郑杨艳, 周建新. 小冲孔微试样材料性能测试技术及应用 [M]. 北京: 科学出版社, 2012. LING X, ZHEN Y Y, ZHOU J X. Testing Technology and Application of Material Properties of Small Punch Micro Sample[M]. Beijing: Science Press, 2012. [7] LIU B Y, LIU F, YANG N, et al. Science[J], 2019, 364(6448): 73-75. [8] 李敏, 梁乃刚, 张泰华, 等. 力学学报[J], 2003, 35(3): 257-264. LI M, LIANG N G, ZHANG T H, et al. Chinese Journal of Theoretical and Applied Mechanics[J], 2003, 35(3): 257-264. [9] 张志杰, 蔡力勋, 陈辉, 等. 力学学报[J], 2019, 51(1): 159-169. ZHANG Z J, CAI L X, CHEN H, et al. Chinese Journal of Theoretical and Applied Mechanics[J], 2019, 51(1): 159-169. [10] 于思淼, 蔡力勋, 姚迪, 等. 力学学报[J], 2018, 50(5): 1063- 1080. YU S M, CAI L X, YAO D, et al. Chinese Journal of Theoretical and Applied Mechanics[J], 2018, 50(5): 1063-1080. [11] OLIVER W C, PHARR G M. Journal of Materials Research[J], 1992, 7(6): 1564-1583. [12] ZAMBALDI C, RAABE D. Acta Materialia[J], 2010, 58(9): 3516- 3530. [13] BUCAILLE J L, STAUSS S, FELDER E, et al. Acta Materialia[J], 2003, 51(6): 1663-1678. [14] LI L L, SU Y, BEYERLEIN I J, et al. Science Advances[J], 2020, 6(39) : eabb6658. [15] 陈恳, 黄波, 王庆, 等. 力学学报[J], 2020, 52(2): 400-407. CHEN K, HUANG B, WANG Q, et al. Chinese Journal of Theoretical and Applied Mechanics[J], 2020, 52(2): 400-407. [16] RENNER E, GAILLARD Y, RICHARD F, et al. International Journal of Plasticity[J], 2016, 77: 118-140. [17] DELINCÉ M, JACQUES P J, PARDOEN T. Acta Materialia[J], 2006, 54(12): 3395-3404. [18] ZHANG H, LI D Y. Acta Materialia[J], 2008, 56(20): 6197-6204. [19] POKLUDA J, CERNY M, SOB M, et al. Progress in Materials Science[ J], 2015, 73: 127-158. [20] SULZER S, LI Z, ZAEFFERER S, et al. Acta Materialia[J], 2020, 185: 13-27. [21] 彭瑞东. 材料力学性能[M]. 北京: 机械工业出版社, 2018. PENG R D. Mechanical Properties of Materials[M]. Beijing: China Machine Press, 2018. [22] FRICK C P, LANG T W, SPARK K, et al. Acta Materialia[J], 2006, 54(8): 2223-2234. [23] KIM H J, HAN J H, KAISER R, et al. Review of Scientific Instru-24] UCHIC M D, DIMIDUK D M. Materials Science and Engineering A [J], 2005, 400/401: 268-278. [25] LI Z, ZHAO S, RITCHIE R O, et al. Progress in Materials Science [J], 2019, 102: 296-345. [26] LIU Y, CAO Y, MAO Q, et al. Acta Materialia[J], 2020, 189: 129- 144. [27] CAO G, GAO H. Progress in Materials Science[J], 2019, 103: 558- 595. [28] 王海舟. 中国科学(B 辑)[J], 2002(6): 481-485. WANG H Z. Science in China (Series B)[J], 2002(6): 481-485. [29] WANG H, ZHAO L, JIA Y, et al. Engineering[J], 2020, 6(6): 621-636. [30] FENG G, QIN H L, JIA Y H, et al. Scripta Materialia[J], 2017, 137: 69-72. [31] NIE J, WEI L, LI D L, et al. Additive Manufacturing[J], 2020, 35: 101295. [32] 冯光. 流体微探应变原位统计分布表征技术研究[D]. 北京: 钢铁 研究总院, 2019. FENG G. Study on Original Position Statistical Distribution & Characterization Technique of Fluid Micro-Explored Strain [D]. Beijing: Central Iron & Steel Research Institute, 2019. [33] 熊骏, 李振环, 朱亚新, 等. 力学学报[J], 2017, 49(4): 763-781. XIONG J, LI Z H, ZHU Y X, et al. Chinese Journal of Theoretical and Applied Mechanics[J], 2017, 49(4): 763-781. [34] GOTO K, WATANABE I, OHMURA T. International Journal of Plasticity[ J], 2019, 116: 81-90.

备注/Memo

备注/Memo:
收稿日期: 2021-02-03  修回日期: 2021-04-14 基金项目: 广东省重点领域研发计划项目(2019B010941001) 第一作者: 赵 雷, 男, 1977 年生, 正高级工程师 通讯作者: 王海舟, 男, 1940 年生, 中国工程院院士, 博士生导师, Email: wanghaizhou@ ncschina. com
更新日期/Last Update: 2022-12-22