[1]孙 杨,陈海峰,杨 杰,等.固体氧化物燃料电池电解质发展现状[J].中国材料进展,2023,42(05):421-430.[doi:10.7502/j.issn.1674-3962.202103010]
 SUN Yang,CHEN Haifeng,YANG Jie,et al.The Development Status of Solid Oxide Fuel Cell Electrolyte[J].MATERIALS CHINA,2023,42(05):421-430.[doi:10.7502/j.issn.1674-3962.202103010]
点击复制

固体氧化物燃料电池电解质发展现状()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第05期
页码:
421-430
栏目:
出版日期:
2023-05-30

文章信息/Info

Title:
The Development Status of Solid Oxide Fuel Cell Electrolyte
文章编号:
1674-3962(2023)05-0421-10
作者:
孙 杨 陈海峰 杨 杰 杨肖肖 贾均红
陕西科技大学机电工程学院, 陕西 西安 710021
Author(s):
SUN Yang CHEN Haifeng YANG Jie YANG Xiaoxiao JIA Junhong
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi‘an 710021, China
关键词:
固体氧化物燃料电池 无电解质燃料电池 功能层 薄膜制备技术 半导体 电子传导
Keywords:
solid oxide fuel cell electrolyte free fuel cell functional layer thin film preparation technology semiconductorelectronic conduction
分类号:
TM911.4
DOI:
10.7502/j.issn.1674-3962.202103010
文献标志码:
A
摘要:
将固体氧化物燃料电池(solid oxide fuel cell, SOFC)的工作温度降低到600~800 ℃ 的中温甚至600 ℃ 以下的低温区域, 是固体氧化物燃料电池未来发展的重要方向。开发在低温下具有高离子电导率的电解质对其发展起着重要作用, 而传统的三层电解质在结构上有着不可避免的弊端, 只通过电解质材料的开发无法从根本上解决电解质与阴极、阳极之间的界面对固体氧化物燃料电池的性能影响。针对这个问题, 研究者们通过对固体氧化物燃料电池结构以及功能层材料的设计, 开发出了新型无电解质燃料电池(electrolyte free fuel cell, EFFC)。概述了以氧化钇稳定氧化锆(YSZ)、掺杂CeO2 、掺杂LaGaO3 等作为电解质的传统三层SOFC 电解质的发展历程, 并简述了先进薄膜制备技术(电泳沉积、磁控溅射、大气等离子喷涂、超音速火焰喷涂等)在制备SOFC 电解质层中的应用, 重点综述了通过能带理论设计的新型EFFC 的研究进展, 并对采用能带理论及其性质设计的具有电子传导特性的材料作为功能层使用的前景进行了展望。
Abstract:
Reducing the working temperature of the solid oxide fuel cell (SOFC) to a intermediate temperature of 600~800 ℃, or even a low-temperature region below 600 ℃, is an important direction for the future development of solid oxide fuel cells. The development of electrolytes with high ionic conductivity at low temperatures plays an important role in its development,while the traditional three-layer electrolyte has inevitable drawbacks in structure. Merely designing electrolyte materials cannot fundamentally solve the effect of the interface between the solid oxide fuel cell electrolyte and the cathode and anode on the performance of the fuel cell. In response to this problem, researchers have developed a new type of electrolyte free fuel cell (EFFC) through the design of solid oxide fuel cell structure and functional layer materials. This paper outlines the development history of traditional three-layer solid oxide fuel cell electrolytes using yttria-stabilized zirconia (YSZ), doped ceria , and doped LaGaO3 as electrolytes, and briefly describes the use of advanced thin film preparation technologies (electrophoretic deposition, magnetron sputtering, atmospheric plasma spraying, high velocity oxygen fuel flame (HVOF) spraying, etc. ) in the preparation of solid oxide fuel cell electrolyte layers. The focus is on the research progress of a new type of electrolyte free fuel cell (EFFC) designed by the energy band theory, and the prospects of using energy band theory and its properties to design materials with electronic conduction characteristics as functional layers are prospected.

参考文献/References:

[1] 杨子民. 环境科学与技术[J], 2020, 43(9): 111-118. YANG Z M. Environmental Science & Technology[J], 2020, 43 (9): 111-118. [2] 罗远来. 微波反应法环境友好地制备钯基低铂非铂燃料电池催化 剂研究[D]. 广州: 华南理工大学, 2011. LUO Y L. Preparation and Investigation of Pd-based Low Pt and Non Pt Catalysts for Fuel Cell Application via Microwave-assisted Method [D]. Guangzhou: South China University of Technology, 2011. [3] STAMBOULI A B, TRAVERSA E J R. Renewable and Sustainable Energy Reviews[J], 2002, 6(5): 433-455. [4] AL-HAMED K H M, DINCER I. Applied Thermal Engineering[J], 2021, 183(P1): 116150. [5] DWIVEDI S. International Journal of Hydrogen Energy[J], 2020, 45 (44): 23988-24013. [6] 李成新, 王岳鹏, 张山林, 等. 中国表面工程[J], 2017, 30(2): 1-19. LI C X, WANG Y P, ZHANG S L, et al. China Surface Engineering[ J], 2017, 30(2): 1-19. [7] 丁姣. 低成本阳极支撑型膜电解质固体氧化物燃料电池的研究 [D]. 广州: 华南理工大学, 2010. DING J. Low Cost Anode-supported Electrolyte Film Solid Oxide Fuel Cells[D]. Guangzhou: South China University of Technology, 2010. [8] 宋明, 马帅, 蒋文春, 等. 机械工程学报[J/ OL], 2021. (2021- 03 - 05) [ 2021 - 03 - 08]. https: / / kns. cnki. net/ kcms/ detail/ 11.2187. TH.20210304.1522.036. html. [9] YAMAMOTO O, ARATI Y, TAKEDA Y, et al. Solid State Ionics [J], 1995, 79: 137-142. [10] SU H, HU Y H. Chemical Engineering Journal[J], 2020, 402: 126235. [11] 冯潇, 赵雪雪, 邢亚哲. 表面技术[J], 2019, 48(4): 10-17. FENG X, ZHAO X X, XING Y Z. Surface Technology[J], 2019, 48(4): 10-17. [12] JING Y, LUND P, ASGHAR M I, et al. Ceramics International [J], 2020, 46(18): 29290-29296. [13] SINDIRAÇ C, ÇAKIRLAR S, BÜYÜKAKSOY A, et al. Journal of the European Ceramic Society[J], 2019, 39(2-3): 409-417. [14] NIE J, ZHENG D, GANESH K S, et al. Ceramics International [J], 2021, 47(3): 3462-3472. [15] LU Z, YU Y, GUO R, et al. Rare Metals[J], 2006, 25(6): 378-383. [16] ZHANG Y, HUANG X, LU Z, et al. Journal of Alloys and Compounds[ J], 2007, 428(1-2): 302-306. [17] LEE H Y, OH S M. Solid State Ionics[J], 1996, 90(1-4): 133- 140. [18] SIMNER S P, BONNETT J F, CANFIELD N L, et al. Electrochemical and Solid State Letters[J], 2002, 5(7): 173-175. [19] SIMNER S P, SHELTON J P, ANDERSON M D, et al. Solid State Ionics[J], 2003, 660(1): 741-748. [20] CHAUOON S, MEEPHO M, CHUANKRERKKUL N, et al. Thin Solid Films[J], 2018, 161: 11-18. [21] LEE Y H, REN H, WU E A, et al. Nano Letters[J], 2020, 20 (5): 2943-2949. [22] ZHANG S L, LI C X, LI C J, et al. Journal of Power Sources[J], 2016, 301: 62-71. [23] LI C X, XIE Y X, LI C J, et al. Journal of Power Sources[J], 2008, 184(2): 370-374. [24] WANG Y P, GAO J T, CHEN W, et al. Journal of Thermal Spray Technology[J], 2020, 29(1): 223-231. [25] VENKATARAMANA K, MADHURI C, REDDY C V. Ceramics International[ J], 2020, 46(17): 27584-27594. [26] GUPTA M, SHIRBHATE S, OJHA P, et al. Solid State Ionics[J], 2018, 320: 199-209. [27] VENKATARAMANA K, MADHURI C, MADHUSUDAN C, et al. Ceramics International[J], 2018, 44(6): 6300-6310. [28] SINGH M, SINGH A K. International Journal of Hydrogen Energy [J], 2020, 45(44): 24014-24025. [29] VENKATARAMANA K, MADHURI C, REDDY Y S, et al. Journal of Alloys and Compounds[J], 2017, 719: 97-107. [30] VENKATARAMANA K, MADHURI C, MADHUSUDAN C, et al. Journal of Applied Physics[J], 2019, 126(14): 144901. [31] KHAN I, TIWARI P K, BASU S. Ionics[J], 2018, 24(1): 211- 219. [32] YAMAGUCHI T, SHIMADA H, HONDA U, et al. Solid State Ionics[ J], 2016, 288: 347-350. [33] DUAN C C , TONG J H, SHANG M, et al. Science[J], 2015, 349(6254): 1321-1326. 429 [34] PEI K, LI H D, ZOU G T, et al. Journal of Power Sources[J], 2017, 342: 515-520. [35] ZHANG Y, CHEN B, GUAN D Q, et al. Nature[J], 2021, 591 (7849): 246-251. [36] 罗丹. 阳极负载中温固体氧化物燃料电池关键材料的研究及单电 池数值模拟[D]. 杭州: 浙江大学, 2007. LUO D. Key Material Study and Numerical Simulation for Anode-Supported Intermediate Temperature Solid Oxide Fuel Cells[D]. Hangzhou: Zhejiang University, 2007. [37] ZHU B, RAZA R, ABBAS G, et al. Nature Nanotechnology[J], 2011, 6: 330. [38] ZHU B, RAZA R, ABBAS G, et al. Advanced Functional Materials [J], 2011, 21(13): 2465-2469. [39] ZHU B, RAZA R, QIN H, et al. Journal of Power Sources[J], 2011, 196(15): 6362-6365. [40] ZHU B, LUND P, RAZA R, et al. Nano Energy[J], 2013, 2(6): 1179-1185. [41] ZHU B, LUND P D, RAZA R, et al. Advanced Energy Materials [J], 2015, 5(8): 1401895. [42] WU Y, XIA C, ZHANG W, et al. Advanced Functional Materials [J], 2015, 26(6): 938-942. [43] ZHU B, HUANG Y, FAN L, et al. Nano Energy[J], 2016, 19: 156-164. [44] NI M, SHAO Z P. Science[J], 2020, 369(6500): 138-139. [45] LAN R, TAO S. Advanced Energy Materials[J], 2014, 4(13): 1301683. [46] YOU Z, XIAOFEI G, HUA Z, et al. Nature [ J], 2016, 534 (7606): 231-234. [47] STEEKE B C H, HEINZEL A. Nature[J], 2001, 414(6861): 345-352. [48] ISHIHARA T, SHIBAYAMA T, HONDA M, et al. Journal of The Electrochemical Society[J], 2000, 147(4): 1332-1337. [49] ESPOSITO V, TRAVERSA E. Journal of the American Ceramic Society[ J], 2008, 91(4): 1037-1051. [50] PERGOLESI D, FABBRI E, D′EPIFANIO A, et al. Nature Materials[ J], 2010, 9(3): 846-852. [51] FABBRI E, D′EPIFANIO A, BARTOLOMEO E D, et al. Solid State Ionics[J], 2008, 179(15-16): 558-564. [52] GANG C, BIN Z, HUI D, et al. ACS Applied Materials & Interfaces[ J], 2018, 10(39): 33179-33186. [53] SHAH M A K Y, RAUF S, MUSHTAQ N, et al. International Journal of Hydrogen Energy[J], 2020, 45(28): 14470-14479. [54] SHAH M A K Y, MUSHTAQ N, RAUF S, et al. International Journal of Hydrogen Energy[J], 2020, 45(51): 27501-27509. [55] SHAH M A K Y, MUSHTAQ N, RAUF S, et al. International Journal of Hydrogen Energy[J], 2019, 44(57): 30319-30327. [56] RAUF S, SHAH M A K Y, ALI N, et al. International Journal of Hydrogen Energy[J], 2021, 46(15): 9861-9873. [57] DONG W, TONG Y, ZHU B, et al. Journal of Materials Chemistry A[J], 2019, 7(28): 16728-16734. [58] Choi S, Yoo S, Kim J,

备注/Memo

备注/Memo:
收稿日期: 2021-03-10  修回日期: 2021-06-23 基金项目: 国家自然科学基金项目(51675508); 陕西省重点研发 计划项目(2019GY-173); 陕西省教育厅专项科研计划 项目(21JK0537) 第一作者: 孙 杨, 男, 1997 年生, 硕士研究生 通讯作者: 贾均红, 男, 1974 年生, 教授, 博士生导师, Email: jhjia@ sust. edu. cn
更新日期/Last Update: 2023-05-06