[1]王琪,李智,张海军,等.增材制造Ti6Al4V基复合材料研究进展[J].中国材料进展,2023,42(05):375-390.[doi:10.7502/j.issn.1674-3962.202109010]
 WANG Qi,LI Zhi,ZHANG Haijun,et al.Progress in Additive Manufacturing of Ti6Al4V-Based Composites[J].MATERIALS CHINA,2023,42(05):375-390.[doi:10.7502/j.issn.1674-3962.202109010]
点击复制

增材制造Ti6Al4V基复合材料研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第05期
页码:
375-390
栏目:
出版日期:
2023-05-30

文章信息/Info

Title:
Progress in Additive Manufacturing of Ti6Al4V-Based Composites
文章编号:
1674-3962(2023)05-0375-16
作者:
王琪李智张海军刘江昊
武汉科技大学 省部共建耐火材料与冶金国家重点实验室,湖北 武汉 430081
Author(s):
WANG QiLI ZhiZHANG HaijunLIU Jianghao
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
关键词:
Ti6Al4V基复合材料增材制造原位合成陶瓷增强相加工参数显微形貌力学性能
Keywords:
Ti6Al4V-based composite additive manufacturing in-situ form ceramic reinforcing phase processing parameter microscopic morphology mechanical properties
分类号:
TG148; TB333; TP391. 7
DOI:
10.7502/j.issn.1674-3962.202109010
文献标志码:
A
摘要:
Ti6Al4V基复合材料具有高杨氏模量、高比强度、良好的耐磨性和高温耐久性等一系列优异的性能,在航空航天、汽车制造和石油化工等高端结构材料领域具有广阔的应用前景。然而,Ti6Al4V基复合材料的传统减材制造方法存在能耗高、效率低、工艺复杂、材料利用率低和后处理加工成本高等共性缺点,无法满足规模化应用的需要。在此情况下,增材制造(additive manufacturing, AM)技术因具有能耗低、效率高、材料利用率高及对复杂形状制品可实现近净成型等优点,在制备Ti6Al4V等合金及其复合材料方面具有显著的应用优势和重要的科研价值。综述了现有Ti6Al4V基复合材料的增材制造方法,包括选区激光熔融(selective laser melting, SLM)、激光定向能量沉积(laser directed energy deposition, LDED)、电子束熔融(electron beam melting, EBM)、丝材电弧增材制造(wire arc additive manufacturing, WAAM)和电子束自由成形(electron beam freeform fabrication, EBFF)法,总结了上述方法的技术原理和优缺点,以及以原位合成陶瓷增强相为主的Ti6Al4V基复合材料的适宜加工参数、显微形貌特征及力学性能特点,并展望了增材制造Ti6Al4V基复合材料领域的技术发展趋势。
Abstract:
Owing to their multiple outstanding properties including high Young‘s modulus, high specific strength, good wear resistance and high temperature durability, Ti6Al4V-based composites had broad prospects in various high-end structural application-fields such as aerospace, automotive manufacturing and petrochemical engineering. However, conventional subtractive manufacturing methods for preparation of Ti6Al4V-based composites were unable to satisfy the requirement of mass production, due to their common disadvantages including high energy consumption, low efficiency, complex processes, low material utilization ratio and the requirement of cost-intensive post treatments. In respect of this, additive manufacturing (AM) technology with a series of merits including low energy consumption, high efficiency, high material utilization ratio and the capability of near-net forming complex-shaped products, had obvious applicating advantage and important researching value in the field of preparing Ti6Al4V-based composites. This paper reviewes the present additive manufacturing methods for preparation of Ti6Al4Vbased composites, including selective laser melting (SLM), laser directed energy deposition (LDED), electron beam melting (EBM), wire arc additive manufacturing (WAAM)and electron beam freeform fabrication (EBFF), summarizes their technical principles and advantages/disadvantages,appropriate processing parameters, microscopic morphology characteristics and featuring mechanical properties of the Ti6Al4Vbased composites containing in-situ formed ceramic reinforcing phases, and outlooks the future development trends in the field of additive manufacturing Ti6Al4V-based composites.

参考文献/References:

\[1\]LIU S, SHIN Y C. Materials & Design\[J\], 2019, 164: 107552. \[2\]CUI C X, HU B M, ZHAO L C, et al. Materials & Design\[J\], 2011, 32(3): 1684-1691. \[3\]IMAM M A, FROES F H S. JOM\[J\], 2010, 62(5): 17-20. \[4\]HAN C J, WANG Q, SONG B, et al. Journal of the Mechanical Behavior Biomedical Materials\[J\], 2017, 71: 85-94. \[5\]LI S F, SUN B, IMAI H, et al. Carbon\[J\], 2013, 61: 216-228. \[6\]ATTAR H, BNISCH M, CALIN M, et al. Acta Materialia\[J\], 2014, 76: 13-22. \[7\]DU W B, YAO Z J, ZHANG S S, et al. Corrosion Science\[J\], 2020, 173: 108766. \[8\]LIU Y, LI S F, MISRA R D K, et al. Scripta Materialia\[J\], 2020, 183: 6-11. \[9\]SU Y, LUO S C, MENG L, et al. Acta Metallurgica Sinica\[J\], 2020, 33(6): 774-788. \[10\]LIU S Y, SHIN Y C. Materials & Design\[J\], 2017, 136: 185-195. \[11\]YAN Q, CHEN B, LI J S. Carbon\[J\], 2021, 174: 451-462. \[12\]BANERJEE R, COLLINS P C, GEN A, et al. Materials Science and Engineering: A\[J\], 2003, 358(1-2): 343-349. \[13\]YA B, ZHOU B W, YANG H S, et al. Journal of Alloys and Compounds\[J\], 2015, 637: 456-460. \[14\]DAS M, BHATTACHARYA K, DITTRICK S A, et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2014, 29: 259-271. \[15\]ZHOU Z G, LIU Y Z, LIU X H, et al. Composites Part B: Engineering\[J\], 2021, 207: 108567. \[16\]ATTAR H, EHTEMAM H S, KENT D, et al. International Journal of Machine Tools and Manufacture\[J\], 2018, 133: 85-102. \[17\]PARRY L, ASHCROFT I A, WILDMAN R D. Additive Manufacturing\[J\], 2016, 12: 1-15. \[18\]BANDYOPADHYAY A, HEER B. Materials Science and Engineering: R\[J\], 2018, 129: 1-16. \[19\]HERZOG D, SEYDA V, WYCISK E, et al. Acta Materialia\[J\], 2016, 117: 371-392. \[20\]ZHOU W W, KAMATA K, DONG M Q, et al. Powder Technology\[J\], 2021, 382: 274-283. \[21\]KING W E, ANDERSON A T, FERENCZ R M, et al. Applied Physics Reviews\[J\], 2015, 2(4): 041304. \[22\]VERMA P K, WARGHANE S, NICHUL U, et al. Materials Characterization\[J\], 2021, 172: 110848. \[23\]AKILAN A A, GKE A, NATH S D, et al. Journal of Manufacturing Processes\[J\], 2020, 59: 43-50. \[24\]CAI C, RADOSLAW C, ZHANG J L, et al. Powder Technology\[J\], 2019, 342: 73-84. \[25\]FARAYIBI P K, ABIOYE T E. International Journal of Rapid Manufacturing\[J\], 2019, 8(3): 259-270. \[26\]HE Y N, MONTGOMERY C, BEUTH J, et al. Materials & Design\[J\], 2019, 183: 108126. \[27\]BORISOV E, MASAYLO D, VERA P. Key Engineering Materials\[J\], 2019, 822: 575-579. \[28\]WATANABE Y, SATO M, CHIBA T, et al. Metallurgical and Materials Transactions A\[J\], 2020, 51(3): 1345-1352. \[29\]KONDOH K, THRERUJIRAPAPONG T, UMEDA J, et al. Composites Science and Technology\[J\], 2012, 72(11): 1291-1297. \[30\]CHEN B, SHEN J, YE X, et al. Acta Materialia\[J\], 2017, 140: 317-325. \[31\]ZHUANG J, GU D D, XI L X, et al. Powder Technology\[J\], 2020, 368: 59-69. \[32\]WEI W H, ZHANG Q, WU W J, et al. Scripta Materialia\[J\], 2020, 187: 310-316. \[33\]GOLYSHEV A, ORISHICH A. The International Journal of Advanced Manufacturing Technology\[J\], 2020, 109(1-2): 579-588. \[34\]LI H L, YANG Z H, CAI D L, et al. Materials & Design\[J\], 2020, 185: 108245. \[35\]LI H L, JIA D C, YANG Z H, et al. Materials Science & Engineering A\[J\], 2021, 801: 140415. \[36\]LIU X, WU M P, LU P P, et al. Materials and Corrosion\[J\], 2020, 71(4): 628-636. \[37\]MIAO X J, LIU X, LU P P, et al. Metals\[J\], 2020, 10(10): 1379. \[38\]ALIMARDANI M, TOYSERKANI E, HUISSOON J P, et al. Optics and Lasers in Engineering\[J\], 2009, 47(11): 1160-1168. \[39\]BYUN Y, LEE S, SEO S M, et al. Metals and Materials International\[J\], 2018, 24(6): 1213-1220. \[40\]CHEN T, LI W P, LIU D F, et al. Ceramics International\[J\], 2021, 47(1): 755-768. \[41\]MAZUMDER J, DUTTA D, KIKUCHI N, et al. Optics and Lasers in Engineering\[J\], 2000, 34(4-6): 397-414. \[42\]ZHANG Y N, BANDYOPADHYAY A. Additive Manufacturing\[J\], 2019, 29: 100783. \[43\]WANG F, MEI J, WU X H. Journal of Materials Processing Technology\[J\], 2008, 195(1-3): 321-326. \[44\]XUE A T, LIN X, WANG L L, et al. Materials & Design\[J\], 2019, 181: 107943. \[45\]MAHAMOOD R M, AKINLABI E T, SHUKLA M, et al. Materials & Design\[J\], 2013, 50: 656-666. \[46\]ZHANG J W, ZHANG Y L, LI W, et al. Rapid Prototyping Journal\[J\], 2018, 24(4): 677-687. \[47\]OYELOLA O, CRAWFORTH P, MSAOUBI R, et al. Additive Manufacturing\[J\], 2018, 24: 20-29. \[48\]LIN X, YUE T M, YANG H O, et al. Acta Materialia\[J\], 2006, 54(7): 1901-1915. \[49\]JANAKI R G D, ESPLIN C K, STUCKER B E, et al. Journal of Materials Science: Materials in Medicine\[J\], 2008, 19(5): 2105-2111. \[50\]RASHID R A R, PALANISAMY S, ATTAR H, et al. Journal of Manufacturing Processes\[J\], 2018, 35: 651-656. \[51\]OBIELODAN J, STUCKER B. The International Journal of Advanced Manufacturing Technology\[J\], 2013, 66(9-12): 2053-2061. \[52\]MAHAMOOD R M, AKINLABI E T, SHUKLA M, et al. Lasers in Engineering\[J\], 2014, 29(3-4): 197-213. \[53\]MAHAMOOD R M, AKINLABI E T. Materials Today: Proceedings\[J\], 2015, 2(4-5): 2679-2686. \[54\]MAHAMOOD R M, AKINLABI E T. Lasers in Engineering\[J\], 2016, 35(1-4): 139-150. \[55\]MAHAMOOD R M, AKINLABI E T. Materiali in Tehnologije\[J\], 2017, 51(3): 473-478. \[56\]MAHAMOOD R M, AKINLABI E T. Materials Science\[J\], 2017, 53(1): 76-85. \[57\]MAHAMOOD R M, AKINLABI E T. Materials & Design\[J\], 2015, 84: 402-410. \[58\]LI L Q, WANG J D, LIN P P, et al. Ceramics International\[J\], 2017, 43(18): 16638-16651. \[59\]WANG J D, LI L Q, TAN C W, et al. Journal of Materials Processing Technology\[J\], 2018, 252: 524-536. \[60\]MA G Y, YU C, TANG B K, et al. Additive Manufacturing\[J\], 2020, 35: 101323. \[61\]WANG J D, LI L Q, LIN P P, et al. Optics and Laser Technology\[J\], 2018, 105: 195-206. \[62\]XUE A T, WANG L L, LIN X, et al. Journal of Laser Applications\[J\], 2020, 32(1): 012007. \[63\]ZHANG K, TIAN X, BERMINGHAM M, et al. Materials & Design\[J\], 2019, 184: 108191. \[64\]ZHANG Y Z, SUN J C, VILAR R. Journal of Materials Processing Technology\[J\], 2011, 211(4): 597-601. \[65\]OGUNLANA M O, AKINLABI E T, ERINOSHO M F. Strojniski VestnikJournal of Mechanical Engineering\[J\], 2017, 63(6): 363-373. \[66\]ERINOSHO M F, AKINLABI E T. Strojniski VestnikJournal of Mechanical Engineering\[J\], 2018, 64(7-8): 488-495. \[67\]OCHONOGOR O F, NYEMBWE K D, AKINLABI E T. Effect of Laser Power on Hardness and Wear Rate of Additive Manufactured Hybrid Ti6Al4V Metal Matrix Composites\[C\]// Rapdasa 2019 Conference Proceedings. 2020: 94-102.. \[68\]POUZET S, PEYRE P, GORNY C, et al. Materials Science and Engineering: A\[J\], 2016, 677: 171-181. \[69\]KRNER C. International Materials Reviews\[J\], 2016, 61(5): 361-377. \[70\]BERMINGHAM M J, KENT D, ZHAN H, et al. Acta Materialia\[J\], 2015, 91: 289-303. \[71\]TAO X W, YAO Z J, ZHANG S S, et al. Vacuum\[J\], 2020, 172: 109070. \[72\]MAHBOOBA Z, WEST H, HARRYSSON O, et al. JOM\[J\], 2017, 69(3): 472-478. \[73\]LIU Y Y, YAO Z J, ZHANG S S, et al. Materials Research Express\[J\], 2019, 6(9): 0965c3. \[74\]CHEN R, TAN C, YU Y, et al. Materials Characterization\[J\], 2020, 169: 110616. \[75\]YANG Z W, FU L Q, WANG S L, et al. Additive Manufacturing\[J\], 2021, 39: 101883. \[76\]WANG H, YAO Z J, TAO X W, et al. Vacuum\[J\], 2020, 172: 109053.

备注/Memo

备注/Memo:
收稿日期: 2021-09-13  修回日期: 2021-11-29 基金项目: 国家自然科学基金项目(52072274, 51872210
更新日期/Last Update: 2023-05-06