[1]王特特,王飞,何博.先驱体聚合物在陶瓷增材制造中的应用进展[J].中国材料进展,2023,42(09):759-768.[doi:10.7502/j.issn.1674-3962.202104026]
 WANG Tete,WANG Fei,HE Bo.Advances in Application of Precursor Polymers in Ceramic Additive Manufacturing[J].MATERIALS CHINA,2023,42(09):759-768.[doi:10.7502/j.issn.1674-3962.202104026]
点击复制

先驱体聚合物在陶瓷增材制造中的应用进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第09期
页码:
759-768
栏目:
出版日期:
2023-09-30

文章信息/Info

Title:
Advances in Application of Precursor Polymers in Ceramic Additive Manufacturing
文章编号:
1674-3962(2023)09-0749-10
作者:
王特特王飞何博
上海工程技术大学材料科学与工程学院 高温合金精密成型研究中心,上海 201620
Author(s):
WANG Tete WANG Fei HE Bo
Research Center of High-Temperature Alloy Precision Forming, School of Materials Science and Engineering,Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
先驱体陶瓷陶瓷增材制造复杂构件力学性能结构/功能一体化
Keywords:
precursor ceramics ceramic additive manufacturing complex componentsmechanical properties integration of structure and function
分类号:
TQ174.7;TP391.73
DOI:
10.7502/j.issn.1674-3962.202104026
文献标志码:
A
摘要:
先驱体陶瓷具有分子结构可设计、化学组成可调控、加工成型方便、力学性能优异、易于成型复杂构件、便于实现结构/功能一体化等优点,克服了传统粉末烧结制备陶瓷材料难于设计与成型的问题,对解决航空航天、国防尖端武器装备面临的材料瓶颈问题具有重要意义。在陶瓷增材制造技术的带动下,先驱体陶瓷的发展迎来了新的契机,增材制造先驱体陶瓷的研究得到了越来越多的关注。介绍了增材制造先驱体陶瓷的研究与应用进展,总结了各类陶瓷增材制造技术的优势和不足,并对先驱体陶瓷增材制造目前存在的问题与发展趋势进行了探讨和展望。
Abstract:
Precursor ceramics have the advantages of designable molecular structure, controllable chemical composition, convenient processing and forming,excellent mechanical properties, easy to form complex components, and easy to realize the integration of structure and function. Compared with ceramic materials prepared by traditional powder sintering method, precursor ceramics are easy to design and form, which is of great significance to solve the material bottleneck problem faced by aviation, aerospace and national defense advanced weapons and equipments. Driven by the additive manufacturing technology of ceramic, the development of precursor ceramics has ushered in a new opportunity. More and more attention has been paid to the research of additive manufacturing precursor ceramics. The research and application progress of additive manufacturing precursor ceramics are introduced, the advantages and disadvantages of various ceramic additive manufacturing technologies are summarized, and the existing problems and development trend are discussed and prospected.

参考文献/References:

\[1\]周汝垚,帅茂兵,蒋驰. 材料导报\[J\],2016,30(1):67-72. ZHOU R Y,SHUAI M B,JIANG C. Materials Reports\[J\],2016,30(1):67-72. \[2\]黄淼俊,伍海东,黄容基,等. 现代技术陶瓷\[J\],2017,38(4):248-266. HUANG M J,WU H D,HUANG R J,et al. Advanced Ceramics\[J\],2017,38(4):248-266. \[3\]梁栋,何汝杰,方岱宁. 现代技术陶瓷\[J\],2017,38(4):231-247. LIANG D,HE R J,FANG D Y. Advanced Ceramics\[J\],2017,38(4):231-247. \[4\]MARCUS H L, BEAMAN J J, BARLOWJ W, et al. American Ceramic Society Bulletin\[J\], 1990, 69(6):1030-1031. \[5\]伍海东,刘伟,伍尚华,等. 陶瓷学报\[J\],2017,38(4):451-459. WU H D,LIU W,WU S H,et al. Journal of Ceramics\[J\],2017,38(4):451-459. \[6\]CHEN H, WANG X, XUE F, et al. Journal of the European Ceramic Society\[J\],2018, 38(16): 5294-5300. \[7\]DUAN W, FAN Z, WANG H, et al. Journal of Materials Research\[J\], 2017, 32(17):3394-3401. \[8\]LI Z, CHEN Z, LIU J, et al. Virtual and Physical Prototyping\[J\], 2020, 15(2):163-177. \[9\]JANA P, SANTOLIQUIDO O, ORTONA A, et al. Journal of the American Ceramic Society\[J\], 2018, 101(7):2732-2738. \[10\]ROMNMANSO B, MOYANO J J, PREZCOLL D, et al. Journal of the European Ceramic Society\[J\], 2018, 38(5):2265-2271. \[11\]ZANCHETTA E, CATTALDO M, FRANCHIN G, et al. Advanced Materials\[J\], 2016, 28(2):370-376. \[12\]ZOCCA A, ELSAYED H, BERNARDO E, et al. Biofabrication\[J\], 2015, 7(2):025008. \[13\]WANG X, SCHMIDT F, HANAOR D, et al. Additive Manufacturing\[J\], 2019, 27:80-90. \[14\]GORJAN L, TONELLO R, SEBASTIAN T, et al. Journal of the European Ceramic Society\[J\], 2019, 39(7):2463-2471. \[15\]HE L, FEI F, WANG W, et al. ACS Applied Materials & Interfaces\[J\], 2019, 11(20):18849-18857. \[16\]WANG X, JIANG M, ZHOU Z, et al. Composites Part B: Engineering\[J\], 2017, 110:442-458. \[17\]SANTOLIQUIDO O, COLOMBO P, ORTONA A. Journal of the European Ceramic Society\[J\], 2019, 39(6):2140-2148. \[18\]LI Y, ZHONG J, WU L, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2019, 117:276-286. \[19\]ZAKERI S, VIPPOLA M, LEVNEN E. Additive Manufacturing\[J\], 2020, 35:101177. \[20\]SUN J, BINNER J, BAI J. Journal of the European Ceramic Society\[J\], 2019, 39(4):1660-1667. \[21\]BRINCKMANN S A, PATRA N, YAO J, et al. Advanced Engineering Materials\[J\], 2018, 20(11):1800593. \[22\]LI S, ZHANG Y, ZHAO T, et al. RSC Advances\[J\], 2020, 10(10):5681-5689. \[23\]WANG M, XIE C, HE R, et al. Journal of the American Ceramic Society\[J\], 2019, 102(9):5117-5126. \[24\]CHEN J, WANG Y, PEI X, et al. Ceramics International\[J\], 2020, 46(9):13066-13072. \[25\]OTUKA A J G, TOMAZIO N B, PAULA K T, et al. Polymers (Basel) \[J\], 2021, 13(12):1094. \[26\]PHAM T A, KIM D P, LIM T W, et al. Advanced Functional Materials\[J\], 2006, 16(9):1235-1241. \[27\]PARK S, LEE D H, RYOO H I, et al. Chemical Communications\[J\], 2009(32):4880-4882. \[28\]BRIGO L,SCHMIDT J E M,GANDIN A,et al. Advanced Science\[J\],2018,5(12):1800937. \[29\]HWA L C, RAJOO S, NOOR A M, et al. Current Opinion in Solid State and Materials Science\[J\], 2017, 21(6):323-347. \[30\]FRIEDEL T, TRAVITZKY N, NIEBLING F, et al. Journal of the European Ceramic Society\[J\], 2005, 25(2/3):193-197. \[31\]ZIAEE M, CRANE N B. Additive Manufacturing\[J\], 2019, 28:781-801. \[32\]LI Y Y, LI L T, LI B. Journal of Alloys and Compounds\[J\], 2015, 620:125-128. \[33\]FARAHANI R D,DUBE M,THERRIAULT D. Advanced Materials\[J\], 2016, 28(28):5794-5821. \[34\]MINAS C,CARNELLI D,TERVOORT E,et al. Advanced Materials\[J\], 2016,28(45):9993-9999. \[35\]XIONG H, CHEN H, ZHAO L, et al. Ceramics International\[J\], 2019, 39(8):2648-2657. \[36\]KEMP J W,HMEIDAT N S,COMPTON B G,et al. Journal of the American Ceramic Society\[J\],2020, 103(8): 4043-4050. \[37\]NAWAFLEH N, CELIK E. Additive Manufacturing\[J\], 2020, 33:101109. \[38\]PIERIN G, GROTTA C, COLOMBO P, et al. Journal of the European Ceramic Society\[J\], 2016, 36(7):1589-1594. \[39\]XIONG H,CHEN H,CHEN Z,et al. Ceramics International\[J\],2020,46(5):6234-6242. \[40\]纪宏超,张雪静,裴未迟,等. 材料工程\[J\],2018,46(7):19-28. JI H C,ZHANG X J,PEI W C,et al. Journal of Materials Engineering\[J\],2018,46(7):19-28. \[41\]DERMEIK B, TRAVITZKY N. Advanced Engineering Materials\[J\], 2020, 22(9):2000256. \[42\]WINDSHEIMER H,TRAVITZKY N,HOFENAUER A,et al. Advanced Materials\[J\],2007,19(24):4515-4519. \[43\]CHENG L, SUN M, YE F, et al. International Journal of Lightweight Materials and Manufacture\[J\], 2018, 1(3):126-141. \[44\]SCHLIER L,ZHANG W,TRAVITZKY N,et al. International Journal of Applied Ceramic Technology\[J\],2011,8(5):1237-1245. \[45\]FU Z,SCHLIER L,TRAVITZKY N,et al. Materials Science and Engineering: A\[J\],2013,560:851-856. \[46\]LIGON S C, LISKA R, STAMPFL J, et al. Chemical Reviews\[J\], 2017, 117(15):10212-10290. \[47\]ZHANG Y, SUN X, NOMURA N, et al. Small\[J\], 2019, 15(22):e1805432. \[48\]WORTHINGTON K S, DO A V, SMITH R, et al. Macromol Biosci\[J\], 2019, 19(2):e1800370. \[49\]LEE K M, PARK H, KIM J, et al. Applied Surface Science\[J\], 2019, 467-468:979-991. \[50\]ELSAYED H, CARRARO F, AGNOLI S, et al. Journal of the European Ceramic Society\[J\], 2018, 38(15):5200-5207. \[51\]DASAN A, ELSAYED H, KRAXNER J, et al. Journal of the European Ceramic Society\[J\], 2019, 39(14):4445-4449.

备注/Memo

备注/Memo:
收稿日期:2021-04-19修回日期:2022-02-21 基金项目:工信部绿色制造系统集成项目;上海工程技术大学特聘教授岗位计划资助项目 第一作者:王特特,男,1997年生,硕士研究生 通讯作者:王飞,男,1982年生,讲师,硕士生导师, Email:wf@sues.edu.cn
更新日期/Last Update: 2023-08-28