[1]卢江琴,刘斐,黄骏成,等.纤维素的酯化改性[J].中国材料进展,2023,42(09):740-748.[doi:10.7502/j.issn.1674-3962.202111012]
 LU Jiangqin,LIU Fei,HUANG Juncheng,et al.Esterification of Cellulose[J].MATERIALS CHINA,2023,42(09):740-748.[doi:10.7502/j.issn.1674-3962.202111012]
点击复制

纤维素的酯化改性()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第09期
页码:
740-748
栏目:
出版日期:
2023-09-30

文章信息/Info

Title:
Esterification of Cellulose
文章编号:
1674-3962(2023)09-0740-09
作者:
卢江琴12刘斐1黄骏成1那海宁1朱锦1
1.中国科学院宁波材料技术与工程研究所 浙江省生物基高分子材料技术与应用重点实验室,浙江 宁波 315201 2. 中国科学技术大学纳米科学技术学院,江苏 苏州 230026
Author(s):
LU Jiangqin12LIU Fei1HUANG Juncheng1NA Haining1ZHU Jin1
1.Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 2.Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 230026, China
关键词:
纤维素酯化非均相体系均相体系CO2可逆溶剂体系
Keywords:
cellulose esterification heterogeneous system homogeneous system CO2 reversible solvent system
分类号:
TQ352.71
DOI:
10.7502/j.issn.1674-3962.202111012
文献标志码:
A
摘要:
随着石化资源储量的加速消耗及环境污染问题的日益严峻,人类社会的绿色可持续发展面临着巨大挑战,利用天然生物质制备新型绿色高分子材料,成为材料科学技术领域重要的发展方向之一。纤维素作为储量最为丰富的非粮可再生生物质原材料,用作高分子材料时潜力巨大。通过酯化改性制备纤维素酯化衍生物,是赋予纤维素良好加工性及功能性的重要方法。主要围绕非均相、DMSO/TBAF、LiCl/DMAc、离子液体等均相以及CO2可逆溶剂等多个体系在纤维素酯化改性中的优势及不足进行了对比分析,进而阐述了各体系中得到的纤维素酯化衍生物及其制品的类型。纤维素酯化衍生物是纤维素最重要的衍生物,酯化改性技术的发展对实现纤维素向高性能绿色可再生材料转化具有重要意义,对补充并替代不可再生的化石资源、维系未来人类社会的可持续发展,以及通过加强生物质在高分子材料科学技术领域的高值转化利用支撑我国践行“碳达峰”及“碳中和”的战略目标具有重要作用。
Abstract:
With the accelerating consumption of petrochemical resources and the increasingly serious problem of environmental pollution, it has brought great challenges to the green and sustainable development of human society. The preparation of new green polymer materials from natural biomass has become the important development direction in the field of material science and technology. Cellulose, as the most abundant non-food renewable biomass raw material, has great potential as a polymer material. The esterified derivatives of cellulose is an important method for endowing cellulose with good processability and functionality. In this paper, the advantages and disadvantages of reactive systems including heterogeneous systems,DMSO/TBAF, LiCl/DMAc, ionic liquid and CO2 reversible solvent in esterification of cellulose are compared and analyzed, and then the types of esterified derivatives of cellulose and their products obtained in each system are described. As the most important cellulose derivative, development of esterification has great significance to achieve the conversion of cellulose to high-performance green renewable materials. It plays an important role to supply and replace non-renewable fossil resources and to maintain the sustainable development of human society in the future.Furthermore,esterification of cellulose will provide a feasible way to enhance the high-quality conversion and utilization of biomass in the field of polymer materials science and technology and thus to support implementation of the strategic objectives of “emission peak” and “carbon neutrality”.

参考文献/References:

\[1\]LYND L R, CUSHMAN J H, NICHOLS R J, et al. Science\[J\], 1991, 251(4999): 1318-1323. \[2\]LYND L R, LASER M S, BRANSBY D, et al. Nature Biotechnology\[J\], 2008, 26(2): 169-172. \[3\]HAN X, DING L, TIAN Z, et al. Industrial Crops and Products\[J\], 2021, 173: 114103. \[4\]GOPINATH V, KAMATH S M, PRIYADARSHINI S, et al. Biomedicine & Pharmacotherapy\[J\], 2022, 146: 112492. \[5\]ZWAWI M. Molecules\[J\], 2021, 26(2): 404. \[6\]周金平, 甘蔚萍, 张俐娜. 中国科学: 化学\[J\], 2012, 42(5): 591-605. ZHOU J P, GAN W P, ZHANG L N. Scientia Sinica Chimica\[J\], 2012, 42(5): 591-605. \[7\]WANG S, LU A, ZHANG L N. Progress in Polymer Science\[J\], 2016, 53: 169-206. \[8\]罗成成, 王晖, 陈勇. 化工进展\[J\], 2015, 34(3): 767-773. LUO C C, WANG H, CHEN Y. Chemical Industry and Engineering Progress\[J\], 2015, 34(3): 767-773. \[9\]尹婵, 魏晓奕, 李积华, 等. 广东化工\[J\], 2012, 39(15): 17-19. YIN C, WEI X Y, LI J H, et al. Guangdong Chemical Industry\[J\], 2012, 39(15): 17-19. \[10\]姚一军, 王鸿儒. 材料导报\[J\], 2018, 32(19): 3478-3488. YAO Y J, WANG H R. Materials Reports\[J\], 2018, 32(19): 3478-3488. \[11\]洪康进, 王倩, 陈俊柳, 等. 食品工业科技\[J\], 2020, 41(10): 332-338. HONG K J, WANG Q, CHEN J L, et al. Science and Technology of Food Industry\[J\], 2020, 41(10): 332-338. \[12\]BENDAOUD A, KEHRBUSCH R, BARANOV A, et al. Carbohydrate Polymers\[J\], 2017, 168: 163-172. \[13\]ZHANG J M, CHEN W W, FENG Y, et al. Polymer International\[J\], 2015, 64(8): 963-970. \[14\]ZHANG J M, WU J, YU J, et al. Acta Polymerica Sinica\[J\], 2017(7): 1058-1072. \[15\]杨云龙. 纤维素酯的合成及性能研究\[D\]. 湘潭:湘潭大学,2014. YANG Y L. Synthesis of Cellulose Esters and Properties Study\[D\]. Xiangtan: Xiangtan University, 2014. \[16\]方磊, 吴小立, 林东强, 等. 化学反应工程与工艺\[J\], 2008, 24(6): 541-544. FANG L, WU X L, LIN D Q, et al. Chemical Reaction Engineering and Technology\[J\], 2008, 24(6): 541-544. \[17\]蒋革, 杨铭, 唐川. 功能材料\[J\], 2019, 50(7): 7035-7039. JIANG G, YANG M, TANG C. Journal of Functional Materials\[J\], 2019, 50(7): 7035-7039. \[18\]山炜巍, 周志宏. 乙醛醋酸化工\[J\], 2016(4): 15-31. SHAN W W, ZHOU Z H. Fine Chemical Industrial Raw Materials & Intermediates\[J\], 2016(4): 15-31. \[19\]MALM C J, EMERSON C J, HIAIT G D. Journal of the American Pharmaceutical Association\[J\], 1951, 40(10): 520-525. \[20\]宋镠毅, 马风国, 邵自强, 等. 高分子材料科学与工程\[J\], 2002(4): 66-68. SONG L Y, MA F G, SHAO Z Q, et al. Polymer Materials Science & Engineering\[J\], 2002(4): 66-68. \[21\]唐越, 侯德发, 谭黄, 等. 高分子材料科学与工程\[J\], 2020, 36(6): 130-135. TANG Y, HOU D F, TAN H, et al. Polymer Materials Science & Engineering\[J\], 2020, 36(6): 130-135. \[22\]HOU D F, LIU Z Y, ZHOU L, et al. International Journal of Biological Macromolecules\[J\], 2020, 161: 177-186. \[23\]HOU D F, LI M L, YAN C, et al. Green Chemistry\[J\], 2021, 23(5): 2069-2078. \[24\]OSTLUND A, LUNDBERG D, NORDSTIERNA L, et al. Biomacromolecules\[J\], 2009, 10(9): 2401-2407. \[25\]HEINZE T, DICKE R, KOSCHELLA A, et al. Macromolecular Chemistry and Physics\[J\], 2000, 201(6): 627-631. \[26\]SEOUD O A E, NAWAZ H, ARAS E P G. Molecules\[J\], 2013, 18(1): 1270-1313. \[27\]CIACCO G T, LIEBERT T F, FROLLINI E, et al. Cellulose\[J\], 2003, 10(2): 125-132. \[28\]LIEBERT T F, HEINZE T J. Biomacromolecules\[J\], 2001, 2(4):1124-1132. \[29\]NAGEL M C V, HEINZE T. Polymer Bulletin\[J\], 2010, 65(9): 873-881. \[30\]XU D Q, LI B, COURTNEY T, et al. Cellulose\[J\], 2011, 18(2): 405-419. \[31\]DUPONT A L. Polymer\[J\], 2003, 44(15): 4117-4126. \[32\]LI W J, ZHANG F Y, WANG W K, et al. Cellulose\[J\], 2018, 25(9): 4955-4968. \[33\]HASSAN M L, MOOREFIELD C N, NEWKOME G R. Macromolecular Rapid Communications\[J\], 2010, 25(24): 1999-2002. \[34\]RAMOS L A, MORGADO D L, EL SEOUD O A, et al. Cellulose\[J\], 2011, 18(2): 385-392. \[35\]CRPY L, MIRI V, JOLY N, et al. Carbohydrate Polymers\[J\], 2011, 83(4): 1812-1820. \[36\]DUCHATELCRPY L, JOLY N, MARTIN P, et al. Carbohydrate Polymers\[J\], 2020, 234: 115912. \[37\]SATG C, GRANET R, VERNEUIL B, et al. Comptes Rendus Chimie\[J\], 2004, 7(2): 135-142. \[38\]XU Y Z, STARK N M, CAI Z Y, et al. International Journal of Polymeric Materials and Polymeric Biomaterials\[J\], 2011, 60(14): 1152-1163. \[39\]DING J J, LI C G, LIU J, et al. Carbohydrate Polymers\[J\], 2017, 157: 1785-1793. \[40\]TANAKA S, IWATA T, IJI M. ACS Sustainable Chemistry & Engineering\[J\], 2017, 5(2): 1485-1493. \[41\]KIM H R, NAM B U. Macromolecular Research\[J\], 2014, 7(22): 773-781. \[42\]SU X X, YAN C M, ZHANG J, et al. Paint & Coatings Industry\[J\], 2020, 50(1): 76-82. \[43\]WAHLSTROM R M, SUUMAKKI A. Green Chemistry\[J\], 2015, 17(2): 694-714. \[44\]ZHOU Y, ZHANG X C, CHENG Y H, et al. Carbohydrate Polymers\[J\], 2022, 286: 119301. \[45\]CHEN M J, LI R M, RUNGE T, et al. ACS Sustainable Chemistry & Engineering\[J\], 2019, 7(20): 16971-16978. \[46\]HIROSE D, KUSUMA S B W, NOMURA S, et al. RSC Advances\[J\], 2019, 9(7): 4048-4053. \[47\]WANG H H, WEN X X, ZHANG X Q, et al. Molecules\[J\], 2017, 22(9): 1419. \[48\]KAKKO T, KING A W T, KILPELINEN I. Cellulose\[J\], 2017, 24(12): 5341-5354. \[49\]CAO Y, LI H Q, ZHANG J. Industrial & Engineering Chemistry Research\[J\], 2011, 50(13): 7808-7814. \[50\]WEN X X, WANG H H, WEI Y, et al. Carbohydrate Polymers\[J\], 2017, 168: 247-254. \[51\]CHEN Z Y, ZHANG J M, XIAO P, et al. ACS Sustainable Chemistry & Engineering\[J\], 2018, 6(4): 4931-4939. \[52\]ZHANG Y F, CHEN X, LI L K, et al. ACS Sustainable Chemistry & Engineering\[J\], 2019, 7(5): 4975-4982. \[53\]潘宝海, 陈来, 陈景, 等. 化工新型材料\[J\], 2020, 48(3): 50-54. PAN B H, CHEN L, CHEN J, et al. New Chemical Materials\[J\], 2020, 48(3): 50-54. \[54\]JESSOP P G, HELDEBRANT D J, LI X W, et al. Nature\[J\], 2005, 436(7054): 1102. \[55\]CHAI Y, CHENG Q, HUANG C J, et al.Green Chemistry\[J\], 2020, 22(15): 4871-4877. \[56\]YANG Y L, XIE H B, LIU E H. Green Chemistry\[J\], 2014, 16(6): 3018-3023. \[57\]ZHANG L H, SHI W T, SHENG H L, et al. Green Chemistry\[J\], 2021, 23(16): 5856-5865. \[58\]LI J L, LU S, LIU F, et al. ACS Sustainable Chemistry & Engineering\[J\], 2021, 9(13): 4744-4754. \[59\]HEIDARI M, ONWUKAMIKE K N, GRAU E, et al. Cellulose\[J\], 2021, 28(11): 6869-6880. \[60\]YANG Y L, SONG Y C, PENG C, et al. Green Chemistry\[J\], 2015, 17(5): 2758-2763. \[61\]WOLFS J, MEIER M A R. Green Chemistry\[J\], 2021, 23(12): 4410-4420. \[62\]GUO Y L, LI L, GUO G, et al. Green Chemistry\[J\], 2021, 23(6): 2352-2361. \[63\]XU Q, SONG L, ZHANG L, et al. Cellulose\[J\], 2018, 25(1): 205-216. \[64\]PEI M, PENG X W, SHEN Y Q, et al. Green Chemistry\[J\], 2020, 22(3): 707-717. \[65\]ONWUKAMIKE K N, GRELIER S, GRAU E, et al. ACS Sustainable Chemistry & Engineering\[J\], 2018, 6(7): 8826-8835. \[66\]BAO X, WANG C H, ZHANG Z Y, et al. Carbohydrate Polymer Technologies and Applications\[J\], 2021, 2: 100099.

备注/Memo

备注/Memo:
收稿日期:2021-11-12修回日期:2022-02-22 基金项目:国家自然科学基金项目(21978310,51773217);宁波市公益类科技计划重点项目(2021S020);中国科学院科技网络服务计划项目(KFJ-STS-QYZD-2021-16-002);中国科学院青年创新促进会项目(2017339) 第一作者:卢江琴,女,1997年生,硕士研究生 通讯作者:那海宁,男,1981年生,研究员,博士生导师, Email:nahaining@nimte.ac.cn 刘斐,男,1984年生,副研究员,硕士生导师, Email:liufei@nimte.ac.cn
更新日期/Last Update: 2023-08-28