[1]赵瑞瑞,杨明庆,牛春晖,等.二氧化钒薄膜的制备及光电性能研究进展[J].中国材料进展,2023,42(04):353-360.[doi:10.7502/j.issn.1674-3962.202104028]
 ZHAO Ruirui,YANG Mingqing,NIU Chunhui,et al.Advances in Preparation and Photoelectrical Properties of Vanadium Dioxide Films[J].MATERIALS CHINA,2023,42(04):353-360.[doi:10.7502/j.issn.1674-3962.202104028]
点击复制

二氧化钒薄膜的制备及光电性能研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第04期
页码:
353-360
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Advances in Preparation and Photoelectrical Properties of Vanadium Dioxide Films
文章编号:
1674-3962(2023)04-0353-08
作者:
赵瑞瑞杨明庆牛春晖刘力双郎晓萍吕勇
北京信息科技大学仪器科学与光电工程学院,北京 100192
Author(s):
ZHAO Ruirui YANG Mingqing NIU Chunhui LIU Lishuang LANG Xiaoping LV Yong
School of Instrumentation Science and OptoElectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
关键词:
相变材料二氧化钒纳米材料薄膜掺杂
Keywords:
phase change material vanadium dioxide nanomaterial thin film doped
分类号:
TQ174
DOI:
10.7502/j.issn.1674-3962.202104028
文献标志码:
A
摘要:
二氧化钒(M/R相)作为一种典型的热致相变材料,在诸多领域都有着广阔的应用。仅在68 ℃左右便可发生高温金属相低温半导体相的完全可逆相变,且相变前后材料的光学、电学等特性均会发生明显变化。基于该特性,二氧化钒可应用于设计各种近红外和中红外调制器件,如“智能窗”、光学器件、军事防护器件等,并具有极高的实用价值。二氧化钒热致变色性能的优劣在很大程度上取决于薄膜的合成方法和制备过程中的参数调控,首先总结了关于二氧化钒相变机理的探索研究,其次重点概述了近几年二氧化钒薄膜制备方法的研究进展,包括磁控溅射法、脉冲激光沉积法、溶胶凝胶法、分子束外延法和溶剂热/水热法等,并讨论了各种制备技术的优缺点。另外,在改善薄膜的热致变色性能方面,总结概述了掺杂和复合工艺对薄膜性能的影响。最后,对二氧化钒薄膜存在的问题及其未来的研究及应用方向进行了讨论与展望。
Abstract:
As a typical thermo-induced phase change material, vanadium dioxide (M/R phase) has wide applications in many fields. Since its phase transition temperature is low, the high temperature metal-low temperature semiconductor completely reversible phase transition could occur only at about 68 ℃, and its photoelectrical properties will change significantly after phase transition. It could be used to design many kinds of nearinfrared and midinfrared application devices, such as “smart windows”, optical devices, military protection devices, etc., which is very practical significance in real lives.Advantages and disadvantages of thermochromic properties of vanadium dioxide depend largely on the synthesis method and the control of the parameters in the preparation process of the films. Firstly, the phase transition mechanisms of the vanadium dioxide were summarized, then, the latest progresses in the preparation of vanadium dioxide thin films were discussed, including magnetron sputtering, pulsed laser deposition, sol-gel, molecular beam epitaxy, and solvothermal/hydrothermal method, etc. The advantages and disadvantages of various preparation technologies were also discussed. In addition, in terms of improving the thermochromic properties of the films, the effects of doping and compositing processes on materials and films were also summarized. Finally, a summary and outlook were made by discussing existing problems in preparation of vanadium dioxide films and future directions of related research and application.

参考文献/References:

\[1\]罗明海,徐马记,黄其伟,等.物理学报\[J\],2016,65(4):5-12. LUO M H,XU M J,HUANG Q W,et al.Acta Physica Sinica\[J\],2016,65(4):5-12. \[2\]陈长,曹传祥,罗宏杰,等.科学通报\[J\],2016,61(15):1661-1680. CHEN C,CAO C X,LUO H J,et al. Chinese Science Bulletin\[J\],2016,61(15):1661-1680. \[3\]刘鹏,梁丽萍,徐耀.光学学报\[J\],2019,39(4):317-324. LIU P,LIANG L P,XU Y. Acta Optics\[J\],2019,39(4):317-324. \[4\]王雅琴,姚刚,黄子健,等. 物理学报\[J\],2016,65(5):268-273. WANG Y Q,YAO G,HUANG Z J,et al.Acta Physica Sinica\[J\],2016,65(5):268-273. \[5\]LIU Z,LU Y,HOU D.Research Progress of VO2 Thin Film as Laser Protecting Material\[C\].Shanghai:Young Scientists Forum, 2017. \[6\]嵇海宁,刘东青,张朝阳,等. 化工进展\[J\],2017,36(11):4099-4105. JI H N,LIU D Q,ZHANG C Y,et al. Chemical Industry and Engineering Progress\[J\],2017,36(11):4099-4105. \[7\]ZHE Q,LIN Y,YUE Z,et al.Materials Research Bulletin\[J\],2018,109: 195-212. \[8\]ZENG W, CHEN N,XIE W.CrystEngComm\[J\],2020,22(5):851-869. \[9\]KUMAR S,STRACHAN J P,KILCOYNE A L D,et al.Applied Physics Letters\[J\],2016,108(7):073102. \[10\]LIN T G,ZHANG Y F.Vacuum\[J\],2019,163:338-341. \[11\]WANG Y, XI X K, LI Z F, et al. New Journal of Physics\[J\], 2018, 20(7): 073026. \[12\]王泽霖,张振华,赵喆,等.物理学报\[J\],2018,67(17):224-233. WANG Z L, ZHANG Z H, ZHAO Z, et al. Journal of Physics\[J\], 2018, 67(17): 224-233. \[13\]SOMMERS C, DONIACH S. Solid State Communications\[J\], 1978, 28(1): 133-135. \[14\]CAVALLERI A, DEKORSY T, CHONG H, et al. Physical Review B Condensed Matter & Materials Physics\[J\], 2004, 70(16): 161102. \[15\]CHEN S. Journal of Physical Chemistry Letters\[J\], 2015, 6(18): 3650-3656. \[16\]KIM C. Predicting the TemperatureStrain Phase Diagram of VO2 from First Principles\[D\]. New York: Columbia University, 2018. \[17\]杨培棣,欧阳琛,洪天舒,等. 物理学报\[J\],2020,69(20):88-95. YANG P D, OUYANG C, HONG T S, et al. Acta Physica Sinica\[J\], 2020, 69(20): 88-95. \[18\]ZHOU H, LI J, BAO S, et al. Applied Surface Science\[J\], 2016, 363(Feb15): 532-542. \[19\]ZHU M, WANG H, LI C, et al. Surface and Coatings Technology\[J\], 2019, 359: 396-402. \[20\]YANG Z H, YANG Q L, YANG L, et al. Science China Technological Sciences\[J\], 2020, 63(8): 1591-1598. \[21\]LIN T G, ZHANG Y F, ZHENG D C. Vacuum\[J\], 2018, 156: 449-455. \[22\]VU T D, LIU S, ZENG X, et al. Ceramics International\[J\], 2020, 46(6): 8145-8153. \[23\]DOU S, ZHANG W, REN F, et al. Materials Chemistry and Physics\[J\], 2020, 259(3): 124042. \[24\]康朝阳,张聪,程静云,等.真空科学与技术学报\[J\],2017,37(6):623-627. KANG C Y, ZHANG C, CHENG J Y, et al. Chinese Journal of Vacuum Science and Technology\[J\], 2017, 37(6): 623-627. \[25\]MASINA B N, AKANDE A A, MWAKIKUNGA B. MRS Advances\[J\], 2020, 5(21/22): 1121-1132. \[26\]FALLAH V M, MIRKAZEMI S M, EFTEKHARI Y B. International Journal of Applied Ceramic Technology\[J\], 2019, 16(3): 943-950. \[27\]LI D, HUANG W, SONG L, et al. Journal of SolGel Science & Technology\[J\], 2015, 75(1): 189-197. \[28\]BEREZINA O, KIRIENKO D, PERGAMENT A, et al. Thin Solid Films\[J\], 2015, 574(Jan1): 15-19. \[29\]JI H, LIU D, ZHANG C, et al. Science of Advanced Materials\[J\], 2017, 9(6): 861-867. \[30\]ZOU J, PENG Y, LIN H. Journal of Materials Chemistry A\[J\], 2013, 1(13): 4250-4254. \[31\]WU S W, TIAN S Q, LIU B S, et al. Solar Energy Materials and Solar Cells\[J\], 2018, 176(1): 427-434. \[32\]ZHANG D, SUN H J, WANG M H, et al. Materials\[J\], 2017, 10(3): 314. \[33\]BIAN J, WANG M, SUN H, et al. Journal of Materials Science\[J\], 2016, 51(13): 6149-6155. \[34\]李建国,惠龙飞,冯昊,等.真空科学与技术学报\[J\],2015,35(2):243-249. LI J G, HUI L F, FENG H, et al. Chinese Journal of Vacuum Science and Technology\[J\], 2015, 35(2): 243-249. \[35\]LI J, AN Z, ZHANG W, et al. Applied Surface Science\[J\], 2020, 529(1): 147108. \[36\]MIYAZAKI K, SHIBUYA K, SUZUKI M, et al. Japanese Journal of Applied Physics\[J\], 2014, 53(7): 071102. \[37\]PENG Z F, WANG Y, DU Y, et al. Journal of Alloys and Compounds\[J\], 2009, 480(2): 537-540. \[38\]ZHU M D, SHAN C, LI C, et al. Materials\[J\], 2018, 11(9): 1724. \[39\]LIANG Z, ZHAO L, MENG W, et al. Journal of Alloys and Compounds\[J\], 2017, 694: 124-131. \[40\]王俊生,郑威猛,宋云龙,等.广东化工\[J\],2020,47(14):18-20. WANG J S, ZHENG W M, SONG Y L, et al. Guangdong Chemical Industry\[J\], 2020, 47(14): 18-20. \[41\]DANG Y, ZHAO L, LIU J. Ceramics International\[J\], 2019, 46(7): 9079-9085. \[42\]WANG C, ZHAO L, LIANG Z, et al. Science & Technology of Advanced Materials\[J\], 2017, 18(1): 563-573. \[43\]YAO L, QU Z, SUN R, et al. ACS Applied Energy Materials\[J\], 2019, 2(10): 7467-7473.

备注/Memo

备注/Memo:
收稿日期:2021-04-21修回日期:2021-07-16 基金项目:国家自然科学基金资助项目(21607158) 第一作者:赵瑞瑞,女,1996年生,硕士研究生 通讯作者:杨明庆,男,1982年生,副研究员,硕士生导师, Email: yangmingqing@bistu.edu.cn 吕勇,男,1971年生,教授,硕士生导师, Email: lvyong@bistu.edu.cn
更新日期/Last Update: 2023-01-31