[1]肖福兵,李红,刘洁,等.自愈水凝胶的构建及生物医学应用[J].中国材料进展,2023,42(11):855-864.[doi:10.7502/j.issn.1674-3962.202108024]
 XIAO Fubing,LI Hong,LIU Jie,et al.Construction of Self-Healing Hydrogel and Application in Biomedicine[J].MATERIALS CHINA,2023,42(11):855-864.[doi:10.7502/j.issn.1674-3962.202108024]
点击复制

自愈水凝胶的构建及生物医学应用()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第11期
页码:
855-864
栏目:
出版日期:
2023-11-30

文章信息/Info

Title:
Construction of Self-Healing Hydrogel and Application in Biomedicine
文章编号:
1674-3962(2023)11-0855-10
作者:
肖福兵1李红1刘洁1蒙丽君1杜文芳2杨胜园1
1.南华大学衡阳医学院公共卫生学院 湖南省典型环境污染与健康危害重点实验室,湖南 衡阳 421001 2.滨州学院生物与环境工程学院,山东 滨州 256600
Author(s):
XIAO Fubing1LI Hong1LIU Jie1MENG Lijun1DU Wenfang2YANG Shengyuan1
1.Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health,Hengyang Medical School, University of South China, Hengyang 421001, China 2.College of Biological and Environmental Engineering, Binzhou University,Binzhou 256600, China
关键词:
聚合物自愈水凝胶非共价键共价键生物医学
Keywords:
polymers self-healing hydrogel non-covalent bond covalent bond biomedicine
分类号:
TQ427.2+6;R318.08
DOI:
10.7502/j.issn.1674-3962.202108024
文献标志码:
A
摘要:
水凝胶是一类亲水但不溶于水的三维网络结构聚合物,通常具有高含水量、良好的生物相容性以及较强的渗透能力。因水凝胶与生物组织具有高度的相似性,广泛应用于组织工程、药物输送、细胞培养等生物医学领域。然而,传统的水凝胶通常表现出机械强度低、易损伤、使用寿命短等局限。近年来,随着分子设计和合成技术的发展,人们开发出了一类具有自动修复损伤能力的自愈水凝胶,极大地弥补了传统水凝胶的缺陷。主要综述了近年来基于动态非共价键和共价键构建自愈水凝胶的研究进展,分别讨论了基于非共价键(包括氢键作用、疏水缔合作用、主客体相互作用和离子相互作用)和共价键(包括硼酸酯键、亚胺键、酰腙键和二硫键)等作用机理构建自愈水凝胶的方法,以及自愈水凝胶在生物医学领域的应用研究进展。最后对自愈水凝胶发展中所面临的挑战和前景作了简要总结,旨在为自愈水凝胶材料的合成及生物医学应用提供一定的参考。
Abstract:
Hydrogels are three-dimensional network polymers, which are hydrophilic but insoluble in water. These materials have high water content, good biocompatibility, and strong permeability. Since the properties of hydrogels are highly similar to biological tissues, hydrogels are widely used in biomedical field, such as tissue engineering, drug delivery, and cell culture. However,traditional hydrogels usually exhibit limitations, such as low mechanical strength, easy to damage, and short service life. In recent years,the self-healing hydrogel with the ability to automatically repair damage has been developed with the improvement of molecular design and synthesis technology, which greatly compensates for the defects of traditional hydrogels. Here, this article mainly reviews the research progress of self-healing hydrogels based on dynamic non-covalent bonds and covalent bonds. The methods of constructing self-healing hydrogels by non-covalent bonds (including hydrogen bonding, hydrophobic association, host-guest interaction and ionic interaction) and covalent bonds (including borate bond, imine bond, acylhydrazone bond and disulfide bond) and the application of self-healing hydrogel in the biomedical field are discussed separately. Finally, we briefly summarize the challenges and prospects of self-healing hydrogels, aimed at providing a certain reference for the synthesis and biomedical applications of self-healing hydrogels.

参考文献/References:

[1]NAAHIDI S, JAFSRI M, LOGNA M, et al. Biotechnology Advances[J], 2017, 35(5): 530-544. [2]FU J, IN HET PANHUIS M. Journal of Materials Chemistry B[J], 2019, 7(10): 1523-1525. [3]CHEN Q, CHEN H, ZHU L, et al. Journal of Materials Chemistry B[J], 2015, 3(18): 3654-3676. [4]SUN P, ZHANG H, XU D, et al. Journal of Materials Chemistry B[J], 2019, 7(16): 2619-2625. [5]ORNELL K J, LOZADA D, PHAN N V, et al. Journal of Materials Chemistry B[J], 2019, 7(13): 2151-2161. [6]SHARMA S, JAIN P, TIWARI S. International Journal of Biological Macromolecules[J], 2020, 160: 489-495. [7]WEN Q, ZHANG Y, LUO J, et al. International Journal of Pharmaceutics[J], 2020, 582: 119334. [8]LIENEMANN P S, VALLMAJOMARTIN Q, PAPAGEORGIOU P, et al. Advanced Science[J], 2020, 7(7): 1903395. [9]WICHTERLE O, LIM D. Nature[J], 1960, 185(4706): 117-118. [10]KUNITSKI M, EICKE N, HUBER P, et al. Nature Communications[J], 2019, 10(1): 30-33. [11]WANG Y Q, YU X D, LI Y J, et al. ACS Applied Materials & Interfaces[J], 2019, 11(21): 19605-19612 [12]CHEN Y J, WANG W D, WU D, et al. ACS Applied Materials & Interfaces[J], 2019, 11(47): 44742-44750 [13]XIAO F B, SUN Y F, DU W F, et al. Advanced Functional Materials[J], 2017, 27(42): 1702147. [14]XIAO F B, LI G G, WU Y, et al. Analytical Chemistry[J], 2016, 88(18): 9207-9212. [15]WANG C P, XIAO F B, CHEN Q S, et al. Analyst[J], 2021, 146(2): 502-508. [16]庞相琛. 价值工程[J], 2020, 39(1):215-218. PANG X C. Value Engineering[J], 2020, 39(1): 215-218. [17]候冰娜, 沈惠玲, 李进,等. 材料工程[J], 2020, 48 (4): 73-82. HOU B N, SHEN H L, LI J, et al.Journal of Materials Engineering[J], 2020, 48(4): 73-82. [18]TAYLOR D L, in het PANHUIS M. Advanced Materials[J], 2016, 28(41): 9060-9093. [19]WEI Z, YANG J H, ZHOU J X, et al. Chemical Society Reviewe[J], 2014, 43(23): 8114-8131. [20]胡欠欠, 关爽. 吉林大学学报(理学版)[J], 2016, 54(5): 1146-1151. HU Q Q, GUAN S. Journal of Jilin University (Science Edition) [J], 2016, 54(5): 1146-1151. [21]LIAO M H, WAN P B, WEN J R, et al. Advanced Functional Materials[J], 2017, 27(48): 1703852. [22]WANG Y J, ZHANG X N, SONG Y H, et al. Chemistry of Materials[J], 2019, 31: 1430-1440. [23]DENG Y, HUSSAIN I, KANG M, et al. Chemical Engineering Journal[J], 2018, 353: 900-910. [24]冯俊峰. 基于胶束交联的强韧型凝胶的制备及性能研究[D]. 成都:西南交通大学, 2019. FENG J F. Preparation and Characterization of Micelles Crosslinked Tough Gel[D]. Chengdu: Southwest Jiaotong University, 2019. [25]YANG B G, WEI Z, CHEN X Y, et al. Journal of Materials Chemistry B[J], 2019, 7(10): 1726-1733. [26]PARK K M, ROH J H, SUNG G, et al. Chemistry-An Asian Journal[J], 2017, 12(13): 1461-1464. [27]HUANG Y, LAWRENCE P G, LAPITSKY Y. Langmuir[J], 2014, 30(26): 7771-7777. [28]ZHENG J, XIAO P, LIU W, et al. Macromolecular Rapid Communications[J], 2016, 37(3): 265-270. [29]DARABI M A, KHOSROZADEH A, MBELECK R, et al. Advanced Materials[J], 2017, 29(31):1700533. [30]李进, 赵梓年, 李征征, 等. 材料导[J], 2019, 33(19): 3328-3335+3346. LI J, ZHAO Z N, LI Z Z, et al. Materials Reports[J], 2019, 33(19): 3328-3335+3346. [31]WEN N, JIANG B J, WANG X J, et al. The Chemical Record[J], 2020, 20(8): 773-792. [32]MENG L, SHAO C Y, CUI C, et al. ACS Applied Materials & Interfaces[J], 2020, 12(1): 1628-1639. [33] CHEN H, HAO B B, GE P H, et al. Polymer Chemistry[J], 2020,11(29): 4741-4748. [34]JIA Y G, ZHU X X. Chemistry of Materials[J], 2015, 27: 387-393. [35\]YUAN T, CUI X M, LIU X K, et al. Macromolecules[J], 2019, 52(8): 3141-3149. [36]陈益鸣. 基于硼酸酯键的自修复/形状记忆高分子材料的制备与性能研究[D]. 无锡: 江南大学, 2018. CHEN Y M. Borate Ester BondBased SelfHealing Shape Memory Polymer Materials[D]. Wuxi: Jiangnan University, 2018. [37]CAI G F, WANG J G, QIAN K, et al. Advanced Science[J], 2017, 4(2): 1600190. [38]丁晓亚, 王宇, 李杲, 等.高分子学报[J], 2019, 50 (5): 505-515. DING X Y, WANG Y, LI G, et al.Acta Polymerica Sinica[J], 2019, 50(5): 505-515. [39]XU J P, LIU Y, HSU S H. Molecules[J], 2019, 24(6): 3005. [40\]XU Y S, LI Y S, CHEN Q M, et al. International Journal of Molecular Sciences[J], 2018, 19(8): 2198. [41]CHEN H N, XING X D, TAN H P, et al. Materials Science and Engineering C[J], 2017, 70: 287-295. [42] CHENG K C, HUANG C F, WEI Y, et al. NPG Asia Materials Volume[J], 2019, 11(25): 1-17. [43]YANG Y L, ZHANG J Y, LIU Z Z, et al. Advanced Materials[J], 2016, 28(14): 2724-2730. [44]YANG X F, LIU G Q, PENG L, et al. Advanced Functional Materials[J], 2017, 27(40): 1703174. [45]侯一凡, 王闽颖, 付丽华, 等. 化工新型材料[J], 2019, 47(5): 180-184. HOU Y F, WANG M Y, FU L H, et al. New Chemical Materials[J], 2019, 47(5): 180-184. [46]XIAO G F, WANG Y, ZHANG H, et al. Carbohydrate Polymers[J], 2019, 218: 68-77. [47]ZHANG X, JIANG S T, YAN T F, et al. Soft Matter[J], 2019, 15(38): 7583-7589. [48]CAO Y, YAO Y, LI Y, et al. Journal of Colloid and Interface Science[J], 2019, 544: 121-129. [49]ZHANG Y F, LI X, ZHONG N, et al. Journal of Biomaterials Science, Polymer Edition[J], 2019, 30(12): 995-1007. [50]BROOKS W L A, SUMERLIN B S. Chemical Reviews[J], 2016, 116(3): 1375-1397. [51]TRAN V T, MREDHA M T I, NA J Y, et al. Chemical Engineering Journal[J], 2020, 394: 124941. [52]BERMEJOWELASCO D, AZEMAR A, OOMMEN P, et al. Biomacromolecules[J], 2019, 20(3): 1412-1420. [53]TENG L J, CHEN Y H, JIA Y G, et al. Journal of Materials Chemistry B[J], 2019, 7(43): 6705-6736. [54]TSENG T C, HSIEH F Y, THEATO P, et al. Biomaterials[J], 2017, 133: 20-28. [55]ZHANG X, FAN J B, LEE C S, et al. ACS Applied Materials & Interfaces[J], 2020, 12(14): 16088-16096. [56]BAI X, GAO M Z, SYED S, et al. Bioactive Materials[J], 2018, 3(4): 401-417. [57]李云洁, 滕彬宏, 赵艳红, 等. 华西口腔医学杂志[J], 2019, 37(3): 253-259. LI Y J, TENG B H, ZHAO Y H, et al. West China Journal of Stomatology[J], 2019, 37(3): 253-259. [58]QIAN C, ZHANG T B, GRAVESANDE J, et al. International Journal of Biological Macromolecule[J], 2019, 123: 140-148. [59]SONG F Y, GONG J W, TAO Y H, et al. International Journal of Biological Macromolecules[J], 2021, 176: 448-458. [60]CHEN X Y, FAN M, TAN H P, et al. Materials Science and Engineering C[J], 2019, 101: 619-629. [61]DONG R N, ZHAO X, GUO B L, et al. ACS Applied Materials & Interfaces[J], 2016, 8(27): 17138-17150. [62]FIGUEIREDO T, JIANG J, JEACOMINE I, et al. Biomacromolecules[J], 2020, 21(1): 230-239. [63]ZHANG Y L, WANG Y, WEN Y Y, et al. ACS Applied Materials & Interfaces[J], 2020, 12(6): 7486-7493.

备注/Memo

备注/Memo:
收稿日期:2021-08-23修回日期:2022-03-15 基金项目:国家自然科学基金项目(21906077, 82073604);湖南省自然科学基金项目(2020JJ5474);湖南省教育厅优秀青年基金项目(20B508);中国博士后面上基金项目(2021M690053);山东省自然科学基金项目(ZR2020QB095);湖南省重点研发项目(2018SK2029);湖南省大学生创新创业训练计划项目(S201910555048,S202010555225,S202010555181);南华大学大学生创新创业训练计划项目(X2019188,2018XJXZ399) 第一作者:肖福兵,男,1990年生,副教授,硕士生导师 通讯作者:杨胜园,女,1975年生,教授,硕士生导师, Email:yangshyhy@126.com
更新日期/Last Update: 2023-10-25