[1]樊世婧,刘梅帅,何博.选区激光熔化Ti-6Al-4V合金微观组织结构研究进展[J].中国材料进展,2023,42(11):865-873.[doi:10.7502/j.issn.1674-3962.202108044]
 FAN Shijing,LIU Meishuai,HE Bo.A Review on the Microstructure of Ti-6Al-4V Alloy by Selective Laser Melting[J].MATERIALS CHINA,2023,42(11):865-873.[doi:10.7502/j.issn.1674-3962.202108044]
点击复制

选区激光熔化Ti-6Al-4V合金微观组织结构研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第11期
页码:
865-873
栏目:
出版日期:
2023-11-30

文章信息/Info

Title:
A Review on the Microstructure of Ti-6Al-4V Alloy by Selective Laser Melting
文章编号:
1674-3962(2023)11-0865-09
作者:
樊世婧12刘梅帅12何博12
1. 上海工程技术大学 高温合金精密成型研究中心,上海 201620 2. 上海工程技术大学材料科学与工程学院,上海 201620
Author(s):
FAN Shijing12LIU Meishuai12HE Bo12
1. Research Center of High-Temperature Alloy Precision Forming, Shanghai University of Engineering Science,Shanghai 201620, China 2. School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
选区激光熔化Ti-6Al-4V合金微观组织结构后处理力学性能
Keywords:
selective laser melting Ti-6Al-4V alloy microstructure post-treatmentmechanical property
分类号:
TG146.23
DOI:
10.7502/j.issn.1674-3962.202108044
文献标志码:
A
摘要:
选区激光熔化(selective laser melting, SLM)技术是一种金属增材制造技术,具有灵活调控、近净成形和快速制造的特点,近年来普遍用于Ti-6Al-4V合金的生产制造,并在航空航天、生物医疗等领域广泛应用。由于该工艺的特殊性,SLM Ti-6Al-4V合金微观组织结构明显不同于传统Ti-6Al-4V铸锻件,通常呈强度高、塑性低的力学性能特点。分别从合金的物相组成、初生β晶形貌、α′马氏体形貌、α′马氏体与位错的相互作用机制、初生β晶与α′马氏体的晶体学取向特征等方面综述了SLM Ti-6Al-4V合金微观组织结构的研究现状,同时对不同后处理工艺下该合金的微观组织结构演变特征及其力学性能进行了简述,最后对未来的工作方向进行了展望,希望能够为SLM Ti-6Al-4V合金的发展、工艺的优化以及力学性能的提高提供参考。
Abstract:
Selective laser melting (SLM), as a metal additive manufacturing technology, has the characteristics of flexible control, near net shape and rapid manufacturing. In recent years, it has been widely used in the manufacturing of Ti-6Al-4V alloy, which has a broad application prospect in aerospace and biomedical fields. Due to the particularity of the SLM process, the microstructure of SLM Ti-6Al-4V alloy is significantly different from traditional castings and forgings, and usually has the characteristics of high strength and low plasticity. In order to promote the development of SLM Ti-6Al-4V alloy and improve its mechanical properties, the microstructure of SLM Ti-6Al-4V alloy is reviewed from the following aspects: the phase compositions, the morphology of the prior β grains, the morphology of α′ martensite, the mechanism between α′ martensite and dislocations, the crystallographic orientation characteristics of the prior β grains and α′ martensite. At the same time, the microstructure characteristics and mechanical properties of SLM Ti-6Al-4V alloy under different post-treatment processes are analyzed. Finally, the future development trend of the SLM Ti-6Al-4V alloy is prospected. It will provide a reference for the development, the process optimization and the improvement of mechanical properties of SLM Ti-6Al-4V alloy.

参考文献/References:

\[1\]WU S Q, LU Y J, GAN Y L, et al. Journal of Alloys and Compounds\[J\], 2016, 672: 643-652. \[2\]NIINOMI M. Metallurgical and Materials Transactions A\[J\], 2002, 33(3): 477-486. \[3\]魏鑫, 赵兴东, 李昌永, 等. 中国材料进展\[J\], 2017, 36(7/8): 588-593. WEI X, ZHAO X D, LI C Y, et al. Materials China\[J\], 2017, 36(7/8): 588-593. \[4\]宗学文, 刘文杰, 张健, 等. 材料导报\[J\], 2020, 34(16): 16083-16086. ZONG X W, LIU W J, ZHANG J, et al. Materials Reports\[J\], 2020, 34(16): 16083-16086. \[5\]董月成, 方志刚, 常辉, 等. 中国材料进展\[J\], 2020, 39(3): 185-190. DONG Y C, FANG Z G, CHANG H, et al. Materials China\[J\], 2020, 39(3): 185-190. \[6\]彭美旗, 程兴旺, 郑超, 等. 稀有金属材料与工程\[J\], 2017(7): 99-105. PENG M Q, CHENG X W, ZHENG C, et al. Rare Metal Materials and Engineering\[J\], 2017(7): 99-105. \[7\]孙洋洋, 常辉, 方志刚, 等. 稀有金属材料与工程\[J\], 2020, 49(5): 1623-1628. SUN Y Y, CHANG H, FANG Z G, et al. Rare Metal Materials and Engineering\[J\], 2020, 49(5): 1623-1628. \[8\]高鹏, 刘玲玉. 材料热处理学报\[J\], 2019, 40(9): 39-43. GAO P, LIU L Y. Transcations of Materials and Heat Treatment\[J\], 2019, 40(9): 39-43. \[9\]杨树开, 曲寿江, 沈军. 热加工工艺\[J\], 2018, 47(9): 26-29. YANG S K, QU S J, SHEN J. Hot Working Technology\[J\], 2018, 47(9): 26-29. \[10\]黄淑阳, 王淑艳, 夏雪莲. 科技创新与应用\[J\], 2019(13): 66-67. HUANG S Y, WANG S Y, XIA X L. Technology Innovation and Application\[J\], 2019(13): 66-67. \[11\]朱霞, 董俊慧, 罗志锋. 金属热处理\[J\], 2020, 45(1): 222-227. ZHU X, DONG J H, LUO Z F. Heat Treatment of Metals\[J\], 2020, 45(1): 222-227. \[12\]张贵华, 董洪波, 朱深亮, 等. 稀有金属材料与工程\[J\], 2016, 45(9): 2454-2457. ZHANG G H, DONG H B, ZHU S L, et al. Rare Metal Materials and Engineering\[J\], 2016, 45(9): 2454-2457. \[13\]李文贤, 易丹青, 刘会群, 等. 粉末冶金材料科学与工程\[J\], 2017, 22(1): 70-78. LI W X, YI D Q, LIU H Q, et al. Materials Science and Engineering of Powder Metallurgy\[J\], 2017, 22(1): 70-78. \[14\]SIZOVA I, BAMBACH M. Journal of Materials Processing Technology\[J\], 2018, 256: 154-159. \[15\]隋清萱. 激光选区熔化成形Ti6Al4V合金微观组织及性能研究\[D\]. 山东大学, 2020. SUI Q X. Research on Microstructure and Properties of Ti6Al4V Alloy by Selective Laser Melting\[D\]. Shandong University, 2020. \[16\]ZAFARI A, BARATI M R, XIA K. Materials Science and Engineering: A\[J\], 2019, 744: 445. \[17\]XU W, BRANDT M, SUN S, et al. Acta Materialia\[J\], 2015, 85: 74-87. \[18\]BARRIOBEROVILA P, ARTZT K, STARK A, et al. Scripta Materialia\[J\], 2020, 182: 48-52. \[19\]HAAR G M T, BECKER T H. Materials (Basel)\[J\], 2018, 11(1): 146. \[20\]LUI E W, XU W, PATERAS A , et al. JOM: The Journal of the Minerals, Metals & Materials Society\[J\], 2017, 69(12): 2679-2683. \[21\]肖美立, 昝林, 柯林达, 等. 金属热处理\[J\], 2020, 45(8): 108-112. XIAO M L, ZAN L, KE L D, et al. Heat Treatment of Metals\[J\], 2020, 45(8): 108-112. \[22\]李吉帅, 戚文军, 李亚江, 等. 材料导报\[J\], 2017(10): 65-69. LI J S, QI W J, LI Y J, et al. Materials Reports\[J\], 2017(10): 65-69. \[23\]ZAFARI A, XIA K. Materials Research Letters\[J\], 2018, 6(11): 627-633. \[24\]李艳春, 张玉婷, 宋美慧, 等. 黑龙江科学\[J\], 2020, 11(4): 21-23. LI Y C, ZHANG Y T, SONG M H, et al. Heilongjiang Science\[J\], 2020, 11(4): 21-23. \[25\]VRANCKEN B, THIJS L, KRUTH J P, et al. Acta Materialia\[J\], 2014, 68(15): 150-158. \[26\]高显鹏, 徐俊强, 周琦, 等. 中国激光\[J\], 2021, 48(14): 126-134. GAO X P, XU J Q, ZHOU Q, et al. Chinese Journal of Lasers\[J\], 2021, 48(14): 126-134. \[27\]YAN X, CHEN C, HUANG C, et al. Journal of Alloys and Compounds\[J\], 2018, 764: 1056-1071. \[28\]巩建强, 杜文强, 张璐, 等. 应用激光\[J\], 2020, 40(3): 404-408. GONG J Q, DU W Q, ZHANG L, et al. Applied Laser\[J\], 2020, 40(3): 404-408. \[29\]SU C, YU H, WANG Z, et al. Journal of Alloys and Compounds\[J\], 2021, 857: 157552. \[30\]张鼎昌. 热处理对激光选区熔化制备的Ti6Al4V合金力学性能影响的原位同步辐射研究\[D\]. 上海:上海交通大学, 2020. ZHANG D C. Effect of Heat Treatment on the Mechanical Behavior of Selective Laser Melted Ti6Al4V by in situ Xray Characterization\[D\]. Shanghai: Shanghai Jiao Tong University, 2020. \[31\]KASCHEL F R, VIJAYARAGHAVAN R K, SHMELIOV A, et al. Acta Materialia\[J\], 2020, 188: 720-732. \[32\]TATIANA M, SANDRA C, KATIA A, et al. Materials\[J\], 2017, 10(4), 348. \[33\]XU W, LUI E W, PATERAS A, et al. Acta Materialia\[J\], 2017, 125: 390-400. \[34\]YANG J, YU H, YIN J, et al. Materials & Design\[J\], 2016, 108: 308-318. \[35\]梁晓康, 董鹏, 陈济轮, 等. 应用激光\[J\], 2014, 14(2): 101-104. LIANG X K, DONG P, CHEN J L, et al. Applied Laser\[J\], 2014, 14(2): 101-104. \[36\]ZHANG D, WANG L, ZHANG H, et al. Acta Materialia\[J\], 2020, 189: 93-104. \[37\]MURR L E, QUINONES S A, GAYTAN S M, et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2009, 2(1): 20-32. \[38\]杨晶晶, 喻寒琛, 韩婕, 等. 材料热处理学报\[J\], 2016, 37(9): 80-85. YANG J J, YU H C, HAN J, et al. Transcation of Materials and Heat Treatment\[J\], 2016, 37(9): 80-85. \[39\]刘静, 刘逸婷. 东北大学学报(自然科学版)\[J\], 2018, 39(8): 1132-1136. LIU J, LIU Y T. Journal of Northeastern University(Natural Science)\[J\], 2018, 39(8): 1132-1136. \[40\]张伟祥, 唐超兰, 陈志茹, 等. 金属热处理\[J\], 2019, 44(6): 122-127. ZHANG W X, TANG C L, CHEN Z R, et al. Heat Treatment of Metals\[J\], 2019, 44(6): 122-127. \[41\]ALIREZA D B, SHAHROOZ N, REZA H, et al. Journal of Manufacturing Processes\[J\], 2021, 64: 140-152. \[42\]VRANCKEN B, THIJS L, KRUTH J P, et al. Journal of Alloys and Compounds\[J\], 2012, 541: 177-185. \[43\]KUMAR P, PRAKASH O, RAMAMURTY U. Acta Materialia\[J\], 2018, 154: 246-260. \[44\]QIU C L, ADKINS N J E, ATTALLAH M M. Materials Science & Engineering A\[J\], 2013, 578(10): 230-239. \[45\]马尧. 应用激光\[J\], 2020, 40(5): 790-794. MA Y. Applied Laser\[J\], 2020, 40(5): 790-794. \[46\]ZHANG X Y, FANG G, LEEFLANG S, et al. Journal of Alloys and Compounds\[J\], 2018, 735: 1562-1575. \[47\]SIMONELLI M, TSE Y Y, TUCK C. 23rd Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference\[C\]. Austin: Laboratory for Freeform Fabrication and University of Texas at Austin, 2012: 480-491. \[48\]HUANG Q L, LIU X J, YANG X, et al. Frontiers of Materials Science\[J\], 2015, 9(4): 373-381. \[49\]LEYENS C, PETERS M. Titanium and Titanium Alloys: Fundamentals and Applications\[M\]. Weinheim: WileyVCH, 2003: 333-423. \[50\]MANIKANDAKUMAR S, ASHWIN P, GUY L. Procedia Technology\[J\], 2015, 20: 231-236. \[51\]TAO P, LI H X, HUANG B Y, et al. China Foundry\[J\], 2018, 15(4): 243-252. \[52\]VOISIN T, CALTA N P, KHAIRALLAH S A, et al. Materials & Design\[J\], 2018, 158(21): 113-126. \[53\]REN X P, LI H Q, GUO H, et al. Materials Science and Engineering: A\[J\], 2021, 817(3): 141384. \[54\]SIMONELLI M, TSE Y Y, TUCK C. Metallurgical and Materials Transactions A\[J\], 2014, 45(6): 2863-2872. \[55\]LEUDERS S, THOENE M, RIEMER A, et al. International Journal of Fatigue\[J\], 2013, 48: 300-307. \[56\]WU M W, LAI P H. Materials Science and Engineering: A\[J\], 2016, 658: 429-438. \[57\]JAMSHIDI P, ARISTIZABAL M, KONG W, et al. Materials (Basel)\[J\], 2020, 13(12): 2813. \[58\]BENEDETTI M, TORRESANI E, LEONI M, et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2017, 71: 295-306. \[59\]QIAN M, XU W, BRANDT M, et al. MRS Bulletin\[J\], 2016, 41(10): 775-784. \[60\]YAN T Q, CHEN B Q, JI X, et al. China Foundry\[J\], 2021, 18(4), 389-396. \[61\]王磊, 马超, 陈洁. 钢铁钒钛\[J\], 2019, 40(4): 39-44. WANG L, MA C, CHEN J. Iron Steel Vanadium Titanium\[J\], 2019, 40(4): 39-44. \[62\]孙京丽, 柯林达, 肖美立, 等. 金属热处理\[J\], 2021, 46(2): 30-36. SUN J L, KE L D, XIAO M L, et al. Heat Treatment of Metals\[J\], 2021, 46(2): 30-36. \[63\]李庆棠, 陈秀思, 王方彬. 世界有色金属\[J\], 2019, 537(21): 164-165. LI Q T, CHEN X S, WANG F B. World Nonferrous Metal\[J\], 2019, 537(21): 164-165. \[64\]WANG P, CHEN F H, ECKERT J, et al. Journal of Central South University\[J\], 2021, 28(4): 1068-1077. \[65\]KUMAR P, RAMAMURTY U. Acta Materialia\[J\], 2019, 169: 45-59. \[66\]王普强, 吴梦杰, 王豫跃, 等. 航空制造技术\[J\], 2020, 063(010): 56-65. WANG P Q, WU M J, WANG Y Y, et al. Aeronautical Manufacturing Technology\[J\], 2020, 063(010): 56-65. \[67\]LI C L, HONG J K, NARAYANA P L, et al. Materials Science and Engineering: A\[J\], 2021, 799: 140367. \[68\]李明, 刘洋, 徐怀忠, 等. 材料热处理学报\[J\], 2019, 40(8): 39-49. LI M, LIU Y, XU H Z, et al. Transcations of Materials and Heat Treatment\[J\], 2019, 40(8): 39-49. \[69\]SABBAN R, BAHL S, CHATTERJEE K, et al. Acta Materialia\[J\], 2019, 162: 239-254. \[70\]CAO S, CHU R, ZHOU X, et al. Journal of Alloys and Compounds\[J\], 2018, 744, 357-363. \[71\]YADROITSEV I, YADROITSAVA I. Virtual and Physical Prototyping\[J\], 2015, 10(2): 1-10. \[72\]LI H, JIA D, YANG Z, et al. Materials Science and Engineering: A\[J\], 2021,801: 140415. \[73\]ETTEFAGH A H, ZENG C, GUO S. Additive Manufacturing\[J\], 2019, 28: 252-258. \[74\]NOELL P J, RODELAS J M, GHANBARI Z N, et al. Additive Manufacturing\[J\], 2020, 33: 101128. \[75\]谢乐春, 刘畅, 华林. 材料科学与工艺\[J\], 2020, 28(3): 116-129. XIE L C, LIU C, HUA L. Materials Science and Technology\[J\], 2020, 28(3): 116-129. \[76\]XIE L C, LIU C, SONG Y L, et al. Journal of Materials Research and Technology\[J\], 2020, 9(2): 2455-2466. \[77\]GAO J B, BEN D D, YANG H J, et al. Journal of Alloys and Compounds\[J\], 2021, 875: 160044.

备注/Memo

备注/Memo:
收稿日期:2021-08-31修回日期:2022-04-22 基金项目:上海市2020年度“科技创新行动计划”扬帆计划项目(20YF1415700) 第一作者:樊世婧,女,1998年生,硕士 通讯作者:刘梅帅,女,1991年生,讲师,硕士生导师, Email:13694120612@163.com
更新日期/Last Update: 2023-10-25