[1]吴帅莹,蒋永和,陆治香,等.液体硅橡胶功能改性及其医学应用研究进展[J].中国材料进展,2023,42(11):849-854.[doi:10.7502/j.issn.1674-3962.202110023]
 WU Shuaiying,JIANG Yonghe,LU Zhixiang,et al.Biofunctionalization of Liquid Silicone Rubber for Medical Applications[J].MATERIALS CHINA,2023,42(11):849-854.[doi:10.7502/j.issn.1674-3962.202110023]
点击复制

液体硅橡胶功能改性及其医学应用研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第11期
页码:
849-854
栏目:
出版日期:
2023-11-30

文章信息/Info

Title:
Biofunctionalization of Liquid Silicone Rubber for Medical Applications
文章编号:
1674-3962(2023)11-0849-06
作者:
吴帅莹蒋永和陆治香刘刚
厦门大学公共卫生学院 分子影像暨转化医学研究中心,福建 厦门 361102
Author(s):
WU ShuaiyingJIANG YongheLU ZhixiangLIU Gang
Center for Molecular Imaging and Translational Medicine,School of Public Health,Xiamen University,Xiamen 361102,China
关键词:
液体硅橡胶纳米材料生物学改性医学应用
Keywords:
liquid silicone rubber nanomaterials biofunctionalization medical applications
分类号:
TQ333.93;R318.08
DOI:
10.7502/j.issn.1674-3962.202110023
文献标志码:
A
摘要:
液体硅橡胶具有良好的化学稳定性和生物相容性,广泛应用于医疗及医疗器械领域,然而,在实际应用中存在机械支撑强度不足、稳定性不足以及易引发感染等缺陷。因此,提升液体硅橡胶的机械强度、抗菌性、化学稳定性和生物活性是首先要解决的问题。研究发现,将各种纳米填料添加到液体硅橡胶基质中,不仅可以提高材料的力学性能,还可以将其电学和抗菌性能提高到一个较好的水平。简要总结了液体硅橡胶的分类、构建及性能改进方式,重点阐述了液体硅橡胶在医学领域应用过程中的研究现状及目前所面临的瓶颈问题。液体硅橡胶生物医学功能改性研究有望提升纳米材料在液体硅橡胶中的分散性并改善其抗菌性、稳定性和导电性,提升液体硅橡胶的应用价值并拓展其应用场景。
Abstract:
Liquid silicone rubber has good chemical stability and biocompatibility and is widely used in medical and medical equipment fields. However, in practical applications, there are several shortcomings, such as insufficient mechanical support strength, insufficient stability, and easy to cause infection.Therefore,improving the mechanical strength, antibacterial properties,chemical stability and biological activity of liquid silicone rubber is the primary problem to be solved. It was found that adding various nanofillers to the liquid silicone rubber matrix can not only improve the mechanical properties, but also improve the electrical and antibacterial properties to a better level. This paper briefly summarizes the classification, construction and performance improvement methods of liquid silicone rubber, and focuses on the current research status and bottleneck problems in the application of liquid silicone rubber in the medical field. The research progress of biomedical functional modification of liquid silicone is expected to improve the dispersion of nanomaterials in liquid silicone and improve its antibacterial, mechanical and stability, enhance the application value of liquid silicone rubber and expand its application scenarios.

参考文献/References:

\[1\]SAWVEL A M,CROWHURST J C,MASON H E,et al. Macromolecules\[J\],2021,54(9):4300-4312. \[2\]YI B,WANG S,HOU C S,et al. Chemical Engineering Journal\[J\],2020,405:127023. \[3\]FAN X,YANG X X,WANG S B,et al. Carbohydrate Polymers\[J\],2021,783:118529. \[4\]DONG Z Y, WEI J Q,YUE H Y,et al. Journal of Colloid and Interface Science\[J\],2021,595:35-42. \[5\]XU J H,CHEN P,WU J W,et al. Chemistry of Materials\[J\],2019,31(19):7951-7961. \[6\]OH J Y,SON D,KATSUMATA T,et al. Science Advances\[J\],2019,5(11):eaav3097. \[7\]KIM S H,SEO H,KANG J,et al. ACS Nano\[J\],2019,13(6):6531-6539. \[8\]HAN P,HE X Y,ZHANG Y X,et al. Advanced Optical Materials\[J\],2019,7(6):1801746. \[9\]ZHOU X Z,ZHANG X,ZHAO H X,et al. Advanced Functional Materials\[J\],2020,30(38):2003533. \[10\]STEWART K A,SHUSTER D,LEISING M,et al. Macromolecules\[J\],2021,54(10):4871-4879. \[11\]QIAN Y H,DONG F H,GUO L Z,et al. Polymer Degradation and Stability\[J\],2020,173(7):109068. \[12\]RAZAVI M,PRIMAVERA R,VYKUNTAET A,et al. Materials Science & Engineering C\[J\],2021,119:111615. \[13\]LIU T, ZENG X R,FANG W Z,et al. Applied Surface Science\[J\],2017,423:630-640. \[14\]YANG X X,JIANG Z Y,LIU H,et al. Polymer Degradation and Stability\[J\],2020,183(3):109422. \[15\]LIN T,WU Y C,SANTOS E,et al. Langmuir\[J\],2020,36(49):15128-15140. \[16\]CHIULAN I,PANAITESCU D M,RADU E R,et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2019,101:103427. \[17\]ZYGO M,LIPINSKA M,LU Z,et al. Applied Clay Science\[J\], 2019,183:105359. \[18\]MOURAD R M,DARWESH O M,ABDELHAKIM A. Journal of Nanoscience and Nanotechnology\[J\],2020,164:3243-3249. \[19\]WU Y F,LIU J L,JIAO X J,et al. ACS Omega\[J\],2020,5(11):6199-6206. \[20\]SHEN G,WANG Z,GE G L,et al. Journal of Nanoscience and Nanotechnology\[J\],2019,19(4):2411-2416. \[21\]AZIZI S,MOMEN G,OUELLETPLAMONDON C,et al. Polymer Testing\[J\],2019,84:106281. \[22\]ZHU Q Q,WANG Z H,ZENG H,et al. Composites Part A: Applied Science and Manufacturing\[J\],2021,142(6):106240. \[23\]YANG X X,LI Z S,JIANG Z Y,et al. Carbohydrate Polymers\[J\],2020,229:115509. \[24\]CHEN H,CHENG H W,DAI Q X,et al. Journal of Controlled Release\[J\],2020,323:635-643. \[25\]SCHUBERT D W, LAMMLEIN M,HANSTEIN H V. Polymer Testing\[J\],2018,66:292-295. \[26\]LAM M,MIGONNEY V,FALENTINDAUDRE C. Acta Biomaterialia\[J\],2020,121:68-88. \[27\]殷运成. 中国社区医师\[J\],2020,805(7):72+74. YIN Y C. Chinese Community Doctors\[J\],2020,805(7):72+74. \[28\]HWANG J I,KANG S Y. Journal of Plastic, Reconstructive & Aesthetic Surgery\[J\],2019,72(11):1832-1838. \[29\]VILLANUEVA K,MARITIN D,MARTINKOVICH S,et al. JPRAS Open\[J\],2018,15:18-24. \[30\]ROTARU I, BUJOREANU C, BELE A, et al. Materials Science & Engineering: C\[J\],2014,42(9):192-198. \[31\]GRUPPUSOA M,TURCOA G,MARSICH E,et al. Applied Materials Today\[J\],2021,24:101148. \[32\]OKUR M E,KARANTAS L D,SENYIGIT Z,et al. Asian Journal of Pharmaceutical Sciences\[J\],2020,15(6):661- 684. \[33\]WANG Y,CHEN G P,ZHANG H,et al. ACS Nano\[J\],2021,15(4):5977-6007. \[34\]LIU J,YE L J,SUN Y L,et al. Advanced Materials\[J\],2020, 32(11):1908008. \[35\]PIOTR M,BROOK M A,SKOV A L. Langmuir\[J\],2018,34(38):11559-11566. \[36\]SUHAR R A,MARQUARDT L M,SONG S,et al. ACS Biomaterials Science & Engineering\[J\],2021,7(9):4209-4220. \[37\]HOUSHYAR S,BHATTACHARYYA A,SHANKS R. ACS Chemical Neuroscience\[J\],2019,10(8):3349-3365. \[38\]STIEGHORSTA J,DOLL T. Additive Manufacturing\[J\],2018,24:217-223. \[39\]DHANASINGH A,JOLLY C. Hearing Research\[J\],2017,356:93-103. \[40\]STIEGHORST J, MAJAURA D, WEVERING H, et al. ACS Applied Materials & Interfaces\[J\],2016,8(12):8239-8246. \[41\]BANERJEE S S,MANDAL S,ARIEF I,et al. ACS Applied Materials & Interfaces\[J\],2021,13(13):15610-15620. \[42\]VEARICK S B,DEMETRIO K B,XAVIER R G,et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\],2018,77: 494-500. \[43\]MITRA D,KANG E,GEE K G. ACS Applied Materials & Interfaces\[J\],2021,3(5):2233-2263. \[44\]WAN B,ZHU Y,TAO J,et al. ACS Applied Materials & Interfaces\[J\],2020,12(8):9050-9061. \[45\]WU S M ,LI A H,ZHAO X Y,et al. ACS Applied Materials & Interfaces\[J\],2019,11(19):17177-17183. \[46\]KOLLNBERGER A,SCHRADER R,BRIEHN C A. Materials Science & Engineering: C\[J\],2020,113:111001. \[47\]PRATEEKSHA P,BAJPAI R,RAO C V,et al. ACS Applied Nano Materials\[J\],2021,4(2):1512-1528. \[48\]ANSARI A,TRECHAN R,WATSON C,et al. Soft Materials\[J\],2021,11(4):388-399. \[49\]KHEIRI S,MOHAME M G A,AMEREH M,et al. Materials Science & Engineering: C\[J\],2020,111:110754. \[50\]VINOTH R,NAKAGAWA T,MATHIYARASU J,et al. ACS Sensors\[J\],2021,6(3):1174-1186. \[51\]LIU C X,ZHU W J,LI M D,et al. Organic Electronics\[J\],2020,76(1):105447. \[52\]GUO X X. Materials Letters\[J\],2021,285:129126. \[53\]MARTINELLI V,BOSI S,PENA B,et al. ACS Applied Bio Materials\[J\],2018,1(5):1530-1537.

备注/Memo

备注/Memo:
收稿日期:2021-10-13修回日期:2022-01-26 基金项目:国家自然科学基金杰出青年基金项目(81925019);科技部国家重点研发计划“纳米科技”重点专项课题(2017YFA0205201) 第一作者:吴帅莹,女,1998年生,硕士 通讯作者:陆治香,女,1991年生,副研究员, Email:zhixianglu_xd@163.com 刘刚,男,1979年生,教授,博士生导师, Email:gangliu.cmitm@xmu.edu.cn
更新日期/Last Update: 2023-10-25