[1]郭维敏,李树昌,闫发发,等.水热法合成纳米MoS2研究与应用进展[J].中国材料进展,2024,43(01):054-65.[doi:10.7502/j.issn.1674-3962.202110033]
 GUO Weimin,LI Shuchang,YAN Fafa,et al.Research and Application Progress on Nano MoS2 Synthesized by Hydrothermal Method[J].MATERIALS CHINA,2024,43(01):054-65.[doi:10.7502/j.issn.1674-3962.202110033]
点击复制

水热法合成纳米MoS2研究与应用进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第01期
页码:
054-65
栏目:
出版日期:
2024-01-25

文章信息/Info

Title:
Research and Application Progress on Nano MoS2 Synthesized by Hydrothermal Method
文章编号:
1674-3962(2024)01-0054-12
作者:
郭维敏李树昌闫发发张振威郑顺奇
中国兵器科学研究院宁波分院,浙江 宁波 315000
Author(s):
GUO WeiminLI ShuchangYAN FafaZHANG ZhenweiZHENG Shunqi
Ningbo Branch of China Academy of Ordnance Science, Ningbo 315000, China
关键词:
MoS2水热法纳米材料材料合成功能材料
Keywords:
MoS2 hydrothermal method nanomaterials materials synthesis functional materials
分类号:
TB383
DOI:
10.7502/j.issn.1674-3962.202110033
文献标志码:
A
摘要:
MoS2是一种典型的二维过渡金属硫化物,广泛应用于润滑和催化领域。作为一种功能材料,纳米MoS2的性能依赖于其表面的活性位点。因此,比表面积对其性能有很大影响。相比于其他合成方法,水热法合成的MoS2纳米材料形貌规则,比表面积大,拥有丰富的活性位点。纳米MoS2在储能、光催化、电催化析氢领域展现出良好的性能和应用前景。主要总结了近年来水热合成纳米MoS2的研究进展,列举了纳米MoS2在储能、光催化以及电催化析氢领域的一些案例,总结了纳米MoS2的发展现状并对水热法合成纳米MoS2的研究和前景进行了展望。
Abstract:
MoS2 is a typical two-dimensional transition metal sulfide, which is widely used in lubrication and catalysis fields. As a functional material, the properties of the nano MoS2 depend on the active sites on the surface. Therefore, the specific surface area of the nano MoS2 has a great influence on its performance.Compared with other synthesis methods, MoS2 nanomaterials synthesized by hydrothermal method have regular morphology, large specific surface area and abundant active sites. Nano-MoS2 shows good performance and application prospect in the fields of energy storage, photocatalysis and electrocatalysis for hydrogen evolution. This paper mainly summarized the research status of hydrothermal synthesis of nano-MoS2 in recent years.Some application cases of nano-MoS2 in the fields of energy storage, photocatalysis and electrocatalytic hydrogen evolution were listed. The future research and prospect of hydrothermal synthesis of nano-MoS2 were prospected.

参考文献/References:

\[1\]中华人民共和国自然资源部.2017年中国土地矿产海洋资源统计公报\[R/OL\].(2018-05-18). http://gimnrgovcn/201805/P020180518560317883958pdfMinistry of Natural Resources of the Peoples Republic of China. Chinas Land, mineral and Marine Resources Statistical Bulletin 2017\[R/OL\].(2018-05-18). http://gimnrgovcn/201805/P020180518560317883958pdf\[2\]WANG Q H, KALANTARZADEH K, KIS A, et al. Nature Nanotechnology\[J\], 2012, 7(11): 699-712.\[3\]DUNCKLE C G, AGGLETON M, GLASSMAN J, et al. Tribology International\[J\], 2011, 44(12): 1819-1826.\[4\]CHEN J, DOMINGUEZ GARCIA E, OLIVIERO E, et al. Journal of Catalysis\[J\], 2016, 339: 153-162.\[5\]KUMAR N, SEMINARIO J M. The Journal of Physical Chemistry C\[J\], 2015, 119(52): 29157-29170.\[6\]XU J, DONG Z, HUANG K, et al. Scripta Materialia\[J\], 2022, 209: 114368.\[7\]TU Y, DENG J, MA C, et al. Nano Energy\[J\], 2020, 72: 104700.\[8\]FEDUSCHAK T, AKIMOV A, MOROZOV M, et al. Comptes Rendus Chimie\[J\], 2016, 19(10): 1315-1325.\[9\]LIN H, YANG L, JIANG X, et al. Energy & Environmental Science\[J\], 2017, 10(6): 1476-1486.\[10\]GUARDIA L, PAREDES J I, MUNUERA J M, et al. ACS Applied Materials & Interfaces\[J\], 2014, 6(23): 21702-21710.\[11\]YANG T, CHEN Y, QU B, et al. Electrochimica Acta\[J\], 2014, 115: 165-169.\[12\]FU X, WU D, ZHOU X, et al. Journal of Nanoparticle Research\[J\], 2006, 9(4): 675-681.\[13\]ZHOU J, QIN J, ZHANG X, et al. ACS Nano\[J\], 2015, 9(4): 3837-3848.\[14\]ORTIZQUILES E O, CABRERA C R. FlatChem\[J\], 2017, 2: 1-7.\[15\]COLEMAN J N, LOTYA M, ONEILL A, et al. Science\[J\], 2011, 42(18): 568-571.\[16\]SINGH C, ALI M A, KUMAR V, et al. Sensors and Actuators B: Chemical\[J\], 2018, 259: 1090-1098.\[17\]王巍,郭俊宏. 中国材料进展\[J\], 2021, 40(1): 69-73.WANG W, GUO J H. Materials China\[J\], 2021, 40(1): 69-73.\[18\]施尔畏,陈之战,元如林, 等. 水热结晶学\[M\]. 北京: 科学出版社, 2004.SHI E W, CHEN Z Z, YUAN R L, et al. Hydrothermal Crystallography\[M\]. Beijing: China Science Publishing & Media Ltd, 2004.\[19\]BIBBY D M, DALE M P. Nature\[J\], 1985, 317(6033): 157-158.\[20\]黄峰. 二硫化钼复合材料的水热制备及其在超级电容器中的应用\[D\]. 徐州:中国矿业大学, 2018.HUANG F. Hydrothermal Preparation of Molybdenum Disulfide Composites and Their Application in Supercapacitors\[D\]. Xuzhou: China University of Mining and Technology, 2018.\[21\]MA L, XU L M, ZHOU X P, et al. Materials Letters\[J\], 2014, 132: 291-294.\[22\]XIE F, WANG G Y, ZHAO T L, et al. Energy Storage\[J\], 2020, 2(2): e118.\[23\]ZHANG R, QIN Y, LIU P, et al. ChemSusChem\[J\], 2020, 13(6): 1354-1365.\[24\]YANG K M, GAO A M, WU H J, et al. International Journal of Energy Research\[J\], 2020, 44(8): 7082-7092.\[25\]SANGABATHULA O, POTPHODE D, SHARMA C S. ChemistrySelect\[J\], 2020, 5(22): 6809-6817.\[26\]YU H Y, WANG Z Z, NI J F, et al. Journal of Materials Science & Technology\[J\], 2021, 67: 237-242.\[27\]REN J, REN R P, LV Y K. Chemical Engineering Journal\[J\], 2018, 353: 419-424.\[28\]WAN L, SUN W, SHEN J J, et al. Electrochimica Acta\[J\], 2016, 211: 962-971.\[29\]LIN X P, XUE D Y, ZHAO L Z, et al. Chemical Engineering Journal\[J\], 2018, 356: 483-491.\[30\]ZHANG R, DONG Y T, ALTAHAN M A, et al. Journal of Energy Chemistry\[J\], 2021, 60(9): 85-94.\[31\]ZHANG Q, ZHANG X F, LI M, et al. Applied Surface Science\[J\], 2019, 487: 452-463.\[32\]XIANG K Q, WEN X Y, HU J, et al. ChemSusChem\[J\], 2019, 12(15): 3602-3614.\[33\]HUANG M H, MAI Y J, ZHAO L J, et al. Electrochimica Acta\[J\], 2021, 388: 138624.\[34\]LIM H, KIM H, KIM S O, et al. Chemical Engineering Journal\[J\], 2020, 387: 124144.\[35\]JIA H, QIU M H, TAWIAH B, et al. Composites Communications\[J\], 2021, 27: 100841.\[36\]LI S W, LIU Y C, ZHAO X D, et al. Angewandte Chemie International Edition\[J\], 2021, 60(37): 20286-20293.\[37\]HUANG M H, MAI Y J, ZHAO L J, et al. ChemElectroChem\[J\], 2020, 7(20): 4218-4223.\[38\]CAO P F, CHEN N, TANG W J, et al. Journal of Alloys and Compounds\[J\], 2022, 898: 162854.\[39\]LI C W, LIU C, WANG Y, et al. Energy Storage Materials\[J\], 2022, 49: 144-152.\[40\]ZHOU M, CHENG L, HAN B Z, et al. Journal of Alloys and Compounds\[J\], 2022, 916: 165487.\[41\]LI S, LIU Y, ZHAO X, et al. Advanced Materials\[J\], 2021, 33(12): 2007480.\[42\]WANG G, BI X, YUE H, et al. Nano Energy\[J\], 2019, 60: 362-370.\[43\]YU H, JIANG G, NI J, et al. Sustainable Materials and Technologies\[J\], 2021, 28: e00255.\[44\]THANGA GOMATHI P, SAHATIYA P, BADHULIKA S. Advanced Functional Materials\[J\], 2017, 27(31): 1701611.\[45\]LI Z, PI Y X, XU D Y, et al. Applied Catalysis B: Environmental\[J\], 2017, 213: 1-8.\[46\]LIU H Q, TAN P F, LIU Y, et al. Journal of Colloid and Interface Science\[J\], 2022, 619: 246-256.\[47\]LIU Y Z, XU X Y, ZHANG J Q, et al. Applied Catalysis B: Environmental\[J\], 2018, 239: 334-344.\[48\]JIA M M, YU S S, LI D, et al. Particle & Particle Systems Characterization\[J\], 2022, 39(10): 1-7.\[49\]SHAN S T, ZHU S S, PAN Z G, et al. Crystal Research and Technology\[J\], 2020, 56(2): 1-7.\[50\]BAO J Y, JIANG X T, HUANG L Z, et al. Journal of Colloid and Interface Science\[J\], 2022, 611: 684-694.\[51\]WU M H, LI L, XUE Y C, et al. Applied Catalysis B: Environmental\[J\], 2018, 228: 103-112.\[52\]米芳芳, 王庆涛. 材料科学与工程学报\[J\], 2022, 40(3): 520-527.MI F F, WANG Q T. Journal of Materials Science and Engineering\[J\], 2022, 40(3): 520-527.\[53\]GAO Y P, HOU Z Q, HUANG K J. Materials Letters\[J\], 2019, 255(15): 126594.\[54\]van TUAN N, TEKALGNE M, NGUYEN T P, et al. International Journal of Energy Research\[J\], 2022, 46(8): 11479-11491.\[55\]ZHANG X, LI H, YANG H, et al. ChemElectroChem\[J\], 2020, 7(15): 3347-3352.\[56\]ZHOU L, XIA T Y, CAO T Q, et al. Journal of Alloys and Compounds\[J\], 2020, 818: 152909.\[57\]XIE J F, QU H C, XIN J P, et al. Nano Research\[J\], 2017, 10(4): 1178-1188.\[58\]DIMAKIS N, VADODARIA O, RUIZ K, et al. Applied Surface Science\[J\], 2021, 555: 149545.\[59\]WU Q K, ZHU Y Q, JIANG T, et al. International Journal of Hydrogen Energy\[J\], 2019, 44(42): 23547-23555.\[60\]WU Q K, JIANG T, LI H, et al. Electrochimica Acta\[J\], 2020, 338: 135888.\[61\]WU Q K, ZHU Y Q, GUO J H, et al. International Journal of Hydrogen Energy\[J\], 2021, 46(21): 11721-11730.\[62\]LIAO L L, YANG L, ZHAO G, et al. Chinese Journal of Chemistry\[J\], 2021, 39(2): 288-294.\[63\]ZHENG L Y, ZHANG W B, GAO B X, et al. Materials Today Energy\[J\], 2021, 19: 100600.\[64\]ZHENG S Z, ZHENG L J, ZHU Z Y, et al. Nanomicro Letter\[J\], 2018, 10(4): 62.\[65\]YANG X Y, LI X Y, WANG Y L, et al. Applied Surface Science\[J\], 2019, 491: 245-255.\[66\]LUO S T, LIN X S, XU L M, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects\[J\], 2020, 586: 124186.\[67\]SHAH S A, XU L, SAYYAR R, et al. Advanced Materials Interfaces\[J\], 2022, 9(23): 1-11.

备注/Memo

备注/Memo:
收稿日期:2021-10-25修回日期:2022-09-07第一作者:郭维敏,男,1993年生,助理研究员,Email:weitianhan@sina.com
更新日期/Last Update: 2023-12-29