[1]高铭英,赵婷婷,姜宇,等.pH响应/H2O2自供型金属过氧化物在肿瘤化学动力学治疗中的应用[J].中国材料进展,2023,42(10):779-786.[doi:10.7502/j.issn.1674-3962.202111015]
 GAO Mingying,ZHAO Tingting,JIANG Yu,et al.pH-Responsive/H2O2 Self-Supplying Metal Peroxides for Tumor Chemodynamic Therapy[J].MATERIALS CHINA,2023,42(10):779-786.[doi:10.7502/j.issn.1674-3962.202111015]
点击复制

pH响应/H2O2自供型金属过氧化物在肿瘤化学动力学治疗中的应用()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第10期
页码:
779-786
栏目:
出版日期:
2023-10-31

文章信息/Info

Title:
pH-Responsive/H2O2 Self-Supplying Metal Peroxides for Tumor Chemodynamic Therapy
文章编号:
1674-3962(2023)10-0779-08
作者:
高铭英赵婷婷姜宇马佳悦韩育衡李妍妍王霆
东北林业大学化学化工与资源利用学院,黑龙江 哈尔滨 150040
Author(s):
GAO Mingying ZHAO Tingting JIANG Yu MA JiayueHAN Yuheng LI Yanyan WANG Ting
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University,Harbin 150040, China
关键词:
肿瘤微环境金属过氧化物芬顿反应活性氧自由基化学动力学疗法
Keywords:
tumor microenvironment metal peroxides Fenton reaction reactive oxygen species chemodynamic therapy
分类号:
R318.08; TB383.1
DOI:
10.7502/j.issn.1674-3962.202111015
文献标志码:
A
摘要:
基于活性氧自由基的抗肿瘤疗法近些年来得到了人们的广泛关注,主要包含光动力疗法、声动力疗法以及化学动力学疗法。其中,化学动力学疗法无需借助外部能量(光能或超声)和氧气,主要依赖金属催化剂(Fe2+、Cu+等)与H2O2分子发生芬顿或类芬顿反应,即可产生高细胞毒性的羟基自由基(·OH)等强氧化性活性物种,该活性物种可破坏细胞脂质、蛋白质和DNA等生物大分子,引发细胞凋亡,从而达到肿瘤治疗的目的。相比应用于传统化学动力学疗法的纳米材料(Fe3O4、Cu2O等),金属过氧化物材料具有在低pH下响应降解、自供H2O2等特点,在应用于肿瘤化学动力学疗法时展现出巨大的优势,逐渐得到了人们的重视。金属过氧化物材料可以在肿瘤病灶区弱酸微环境下生成H2O2与金属离子,依靠肿瘤病灶区H2O2水平的提高和金属离子过载,或者通过产生的金属离子与H2O2进一步发生芬顿或类芬顿反应生成·OH来杀伤肿瘤细胞,同时某些金属离子也会抑制细胞线粒体电子传递链协同杀死肿瘤细胞,从而提高肿瘤多模式治疗效果。从介绍肿瘤化学动力学疗法的概念和治疗机理入手,总结几种不同金属过氧化物纳米材料应用于肿瘤治疗的反应原理与机制,综述目前国内外所开发的pH响应/H2O2自供型金属过氧化物在肿瘤治疗方面的研究进展,并对其应用前景、发展趋势和挑战进行展望。
Abstract:
Antitumor therapies based on reactive oxygen species (including photodynamic, sonodynamic and chemodynamic therapy) have attracted extensive attentions in recent years. Among them, chemodynamic therapy requires no external energy (light or ultrasound) and oxygen, but mainly relies on the Fenton or Fentonlike reaction between metal catalysts (Fe2+, Cu+, etc) and hydrogen peroxide molecules to produce highly oxidizing active species (like cytotoxic hydroxyl radical ·OH). These active species destroy biological macromolecules (such as cell lipids, proteins and DNA, etc.), and trigger cell apoptosis, thus achieving tumor therapy. Compared with traditional chemodynamic therapy nanomaterials (Fe3O4, Cu2O, etc.), metal peroxides-based materials have gradually gained people’s attention, and show great potentials for chemodynamic therapy application due to their low pH-responsive degradation and self-providing H2O2 features. Metal peroxides materials can generate H2O2 and metal ions under slightly acidic tumor microenvironment, and kill tumor cells by increasing H2O2 level and overloading intratumoral metal ions, or by further producing ·OH via Fenton or Fenton-like reaction between metal ions and H2O2. In addition, some metal ions can inhibit mitochondrial electron transport chain to synergistically kill tumor cells, thus improving multimodal therapeutic effect on tumors. In this paper, the concept and treatment mechanism of chemodynamic therapy are first introduced, and the reaction principle and mechanism for several different kinds of metal peroxides nanomaterials are summarized. Then the recent domestic and foreign research progress of pH-responsive/H2O2 self-supplying metal peroxides nanomaterials applied for tumor treatments is reviewed.Finally, their application potentials, development trends and possible challenges are prospected.

参考文献/References:

\[1\]LI Z,NI J,LIU L,et al.ACS Applied Materials & Interfaces\[J\],2021,13(25):29340-29348. \[2\]LIOU G,STORZ P.Free Radical Research\[J\],2010,44(5):479-496. \[3\]ROEMELING C V,JIANG W,CHAN C K,et al.Trends in Biotechnology\[J\],2017,35(2):159-171. \[4\]HE T,JIANG C,HE J,et al.Advanced Materials\[J\],2021,33(13):2008540. \[5\]ZHANG C,BU W,NI D,et al.Angewandte ChemieInternational Edition\[J\],2016,128(6):2141-2146. \[6\]RANJI B H,GURR P A,DUNSTAN D E,et al.ACS Nano\[J\],2018,12(12):11819-11837. \[7\]MUNOZ M,PEDRO Z M D,CASAS J A,et al.Applied Catalysis B: Environmental\[J\],2015,176(177):249-265. \[8\]DING Y,WAN J,ZHANG Z,et al.ACS Applied Materials & Interfaces\[J\],2018,10(5):4439-4449. \[9\]CHU C,LIN H,LIU H,et al.Advanced Materials\[J\],2017,29(23):1605928. \[10\]MA B,WANG S,LIU F,et al.Journal of the American Chemical Society\[J\],2019,141(2):849-857. \[11\]MITTAL C K,MURAD F.Proceedings of the National Academy of Sciences\[J\],1977,74(10):4360-4364. \[12\]WANG J,YI J.Cancer Biology & Therapy\[J\],2008,7(12):1875-1884. \[13\]KUMAR B,KOUL S.Cancer Research\[J\],2008,68(6):1777-1785. \[14\]LIU C,WANG D,ZHANG S,et al.ACS Nano\[J\],2019,13(4):4267-4277. \[15\]TANG Z,LIU Y,HE M,et al.Angewandte ChemieInternational Edition\[J\],2018,58(4):946-956. \[16\]陈良,冯炜,陈雨.中国材料进展\[J\],2022,41(9):758-768. CHEN L, FENG W, CHEN Y. Materials China\[J\], 2022, 41(9): 758-768. \[17\]覃丽婷,孙芸,徐柏龙,等.中国材料进展\[J\],2022,41(9):706-717. TAN L T, SUN Y, XU B L, et al. Materials China\[J\], 2022, 41(9): 706-717. \[18\]GAO S,LIN H,ZHANG H,et al.Advanced Science\[J\],2018,6(3):1801733. \[19\]SHI C,LI M,ZHANG Z,et al.Biomaterials\[J\],2020,233: 119755. \[20\]BOKARE A D,CHOI W.Journal of Hazardous Materials\[J\],2014,275:121-135. \[21\]POYTON M F ,SENDECKI A M,CONG X,et al.Journal of the American Chemical Society\[J\],2016,138(5):1584-1590. \[22\]EMBER E,ROTHBART S,PUCHTA R,et al.New Journal of Chemistry\[J\],2009,33(1):34-49. \[23\]XU A,LI X,YE S,et al.Applied Catalysis B: Environmental\[J\],2011,102(1/2):37-43. \[24\]GAO S,JIN Y,GE K,et al.Advanced Science\[J\],2019,6(24):1902137. \[25\]ZHANG M,SONG R,LIU Y,et al.Chem\[J\],2019,5(8):2171-2182. \[26\]LIN L,WANG J,SONG J,et al.Theranostics\[J\],2019,9(24):7200-7209. \[27\]DOSKEY C M,BURANASUDJA V,WAGNER B A,et al.Redox Biology\[J\],2016,10:274-284. \[28\]ERMAK G,DAVIES K J.Molecular Immunology\[J\],2002,38(10):713-721. \[29\]NORTHUP A,CASSIDY D.Journal of Hazardous Materials\[J\],2008,152(3):1164-1170. \[30\]HAN Y,OUYANG J,LI Y,et al.ACS Applied Materials & Interfaces\[J\],2020,12(1):288-297. \[31\]YAN J,MENG W,SHAN H,et al.ACS Applied Nano Materials\[J\],2021,4(2):1351-1363. \[32\]CHEN F,YANG B,XU L,et al.ChemMedChem\[J\],2021,16(14):2278-2286. \[33\]MASOMBOON N,RATANATAMSKUL C,LU M.Environmental Science & Technology\[J\],2009,43(22):8629-8634. \[34\]PAN Y,SU H,ZHU Y,et al.Water Research\[J\],2018,145:731-740. \[35\]LIN L,HUANG T,SONG J,et al.Journal of the American Chemical Society\[J\],2019,141(25):9937-9945. \[36\]HOU S,GAO Y,MA X,et al.Chemical Engineering Journal\[J\],2021,416:129037. \[37\]WU D,BAI Y,WANG W,et al.Journal of Hazardous Materials\[J\],2019,374:319-328. \[38\]TANG Z,LIU Y,NI D,et al.Advanced Materials\[J\],2019,32(4):1904011. \[39\]FRANKLIN R B,COSTELLO L C.Archives of Biochemistry and Biophysics\[J\],2007,463(2):211-217. \[40\]ZHANG D,HUANG F,MA Y,et al.ACS Applied Materials & Interfaces\[J\],2021,13(15):17392-17403.

备注/Memo

备注/Memo:
收稿日期:2021-11-15修回日期:2022-03-08 基金项目:国家自然科学基金项目(H81901868);中央高校基本科研业务费专项资金项目(2572018BU03) 第一作者:高铭英,女,1991年生,硕士 通讯作者:李妍妍,女,1986年生,副教授,硕士生导师, Email:liyanyan_ls@126.com 王霆,男,1980年生,教授,博士生导师, Email:thundersking@nefu.edu.cn
更新日期/Last Update: 2023-09-28