[1]顾婉莹,曾毅成,李红博.铅基卤化物钙钛矿纳米晶掺杂研究进展[J].中国材料进展,2023,42(10):769-778.[doi:10.7502/j.issn.1674-3962.202110018]
 GU Wanying,ZENG Yicheng,LI Hongbo.Research Progress on Doping for Lead Halide Perovskite Nanocrystals[J].MATERIALS CHINA,2023,42(10):769-778.[doi:10.7502/j.issn.1674-3962.202110018]
点击复制

铅基卤化物钙钛矿纳米晶掺杂研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第10期
页码:
769-778
栏目:
出版日期:
2023-10-31

文章信息/Info

Title:
Research Progress on Doping for Lead Halide Perovskite Nanocrystals
文章编号:
1674-3962(2023)10-0769-10
作者:
顾婉莹曾毅成李红博
北京理工大学材料学院,北京 100081
Author(s):
GU WanyingZENG YichengLI Hongbo
School of Materials Science & Engineering,Beijing Institute of Technology,Beijing 100081,China
关键词:
铅基卤化物钙钛矿半导体纳米晶掺杂荧光金属离子
Keywords:
lead halide perovskite semiconductor nanocrystal doping photoluminescence metal ion
分类号:
TN304.2
DOI:
10.7502/j.issn.1674-3962.202110018
文献标志码:
A
摘要:
铅基卤化物钙钛矿CsPbX3(X=Cl,Br,I)半导体纳米晶由于具有窄半峰宽、可调发射波长、高荧光量子产率等优异的光电特性,在发光二极管、激光器、太阳能电池等领域有很广阔的应用前景。通过化学掺杂的方法将掺杂原子引入到钙钛矿纳米晶中,可以改变纳米晶的光电性质,包括带隙宽度、光致发光强度、荧光量子产率和稳定性,掺杂原子种类和浓度也会影响钙钛矿纳米晶的电子能带结构和荧光特性,因此针对钙钛矿纳米晶的掺杂成为了近年来的研究热点。ABX3型纳米晶的A/B/X位均可被杂质原子取代,研究发现,B位掺杂对纳米晶性质的影响更为明显,综述了铅基卤化物钙钛矿纳米晶的B位掺杂方法、机理及对其结构和光电性能的影响,掺杂元素主要包括Mn,Ln,Sn和碱土金属等。掺杂上述离子可有效改善钙钛矿纳米晶光学性能和稳定性,并进一步推动其实际应用。
Abstract:
Lead halide perovskite CsPbX3(X=Cl,Br,I) semiconductor nanocrystals have excellent photoelectric properties,such as narrow full width at half maximum,tunable emission wavelength and high photoluminescence quantum yield,which have great potentials for their applications in light-emitting diodes,lasers,solar cells.By introducing impurity atoms,the optoelectronic properties of perovskite nanocrystals,including the width of band gap,the intensity of photoluminescence and quantum yield can be adjusted and the stability of perovskite nanocrystals can be improved.The type and concentration of impurity also affect the electron band structure and photoluminescence properties of perovskite nanocrystals.Therefore,the doping of perovskite nanocrystals has become the focus of research in recent years.The A/B/X sites of ABX3 nanocrystals can be replaced by impurity atoms.The B-site ions have a significant effect on the properties of nanocrystals.In this paper,we review the doping methods,mechanism,and effects on the structure and photoelectric properties of perovskite nanocrystals on B-site.The doped elements mainly include manganese,lanthanide,tin and alkaline earth metals.Doping these ions in perovskite nanocrystals can effectively improve the optical performance and stability of perovskite nanocrystals,and further promote the practical application.

参考文献/References:

\[1\]FAN Q,BIESOLD G V,MA J,et al. Angewandte Chemie International Edition\[J\],2020,59(3):1030-1046. \[2\]WANG S,BI C,YUAN J,et al. American Chemical Society Energy Letters\[J\],2018,3(1):245-251. \[3\]SHI H,ZHANG X,SUN X,et al. The Journal of Physical Chemistry C\[J\],2019,123(32):19844-19850. \[4\]DAI J,XI J,ZU Y,et al. Nano Energy\[J\],2020,70:104467. \[5\]WU L,HU H,XU Y,et al. Nano Letters\[J\],2017,17(9):5799-5804. \[6\]ZHANG Y,ZHU H,ZHENG J,et al. The Journal of Physical Chemistry C\[J\],2019,123(7):4502-4511. \[7\]SETH S,SAMANTA A. Scientific Reports\[J\],2016,6:37693. \[8\]UDAYABHASKARARAO T,KAZES M,HOUBEN L,et al. Chemistry of Materials\[J\],2017,29(3):1302-1308. \[9\]PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al. Nano Letters\[J\],2015,15(6):3692-3696. \[10\]LI X,WU Y,ZHANG S,et al.Advanced Functional Materials\[J\],2016,26(15):2435-2445. \[11\]AKKERMAN Q A,RAINO G,KOVALENKO M V,et al.Nature Materials\[J\],2018,17:394-405. \[12\]RAINOE G,NEDELCU G,PROTESESCU L,et al. American Chemical Society Nano\[J\],2016,10(2):2485-2490. \[13\]ZHANG Q,CHANG C,ZHAO W,et al. Optics Letters\[J\],2018,43(24):5925-5928. \[14\]KIM H P,KIM J,KIM B S,et al. Advanced Optical Materials\[J\],2017,5(7):1600920. \[15\]SHI Y,XI J,LEI T,et al. Applied Materials Interfaces\[J\],2018,10(11):9849-9857. \[16\]XU L J,WORKU M,HE Q Q,et al. The Journal of Physical Chemistry Letters\[J\],2019,10(19):5836-5840. \[17\]ZHENG X,HOU Y,SUN H T,et al. The Journal of Physical Chemistry Letters\[J\],2019,10(10):2629-2640. \[18\]LU M,ZHNAG X,BAI X,et al. American Chemical Society Energy Letters\[J\],2018,3(7):1571-1577. \[19\]LIU W,LIN Q,LI H,et al. Journal of the American Chemical Society\[J\],2016,138(45):14954-14961. \[20\]TRAVIS W,GLOVER E,BRONSTEIN H,et al. Chemical Science\[J\],2016,7:4548-4556. \[21\]MIR W J,JAGADEESWAEAEAO M,DAS S,et al. American Chemical Society Energy Letters\[J\],2017,2(3):537-543. \[22\]YONG Z J,GUO S Q,MA J P,et al. Journal of the American Chemical Society\[J\],2018,140(31):9942-9951. \[23\]LIU H,WU Z,SHAO J,et al. American Chemical Society Nano\[J\],2017,11(2):2239-2247. \[24\]YADAV R S,PANDEY S K,PANDEY A S,et al. Journal of Luminescence\[J\],2011,131(9):1998-2003. \[25\]OZAROWSKI A,MCGARVEY B R,SARKAR A B,et al. Inorganic Chemistry\[J\],1988,27(4):628-635. \[26\]LI G R,QU D L,ZHAO W X,et al. Electrochemistry Communications\[J\],2007,9(7):1661-1666. \[27\]QUAN Z,WANG Z,YANG P,et al. Inorganic Chemistry\[J\],2007,46(4):1354-1360. \[28\]SHARMA V K,GOKYAR S,KELESTEMUR Y,et al. Small\[J\],2015,10(23):4961-4966. \[29\]PAROBEK D,ROMAN B J,DONG Y,et al. Nano Letters\[J\],2016,16(12):7376-7380. \[30\]MIR W J,MAHOR Y,LOHAR A,et al. Chemistry of Materials\[J\],2018,30(22):8170-8178. \[31\]HUANG G,WANG C,XU S,et al. Advanced Materials\[J\],2017,29(29):1700095. \[32\]LI F,XIA Z,GONG Y,et al. Journal of Materials Chemistry C\[J\],2017,5:9281-9287. \[33\]GAO D,QIAO B,XU Z,et al. The Journal of Physical Chemistry C\[J\],2017,121(37):20387-20395. \[34\]ADHIKARI S D,DUTTA S K,DUAAT A,et al. Angewandte Chemie International Edition\[J\],2017,56(30):8746-8750. \[35\]XU K,LIN C C,XIE X,et al. Chemistry of Materials\[J\],2017,29(10):4265-4272. \[36\]PAROBEK D,DONG Y,QIAO T,et al. Chemistry of Materials\[J\],2018,30(9):2939-2944. \[37\]QIAO T,PAROBEK D,DONG Y,et al. Nanoscale\[J\],2019,11:5247-5253. \[38\]VOLONAKIS G,FILIP M R,HAGHIGHIRAD A A,et al. The Journal of Physical Chemistry Letters\[J\],2016,7(7):1254-1259. \[39\]RAVI V K,SINGHAI N,NAG A. Journal of Materials Chemistry A\[J\],2018,6:21666-21675. \[40\]VOLONAKIS G,HAGHIGHIRAD A A,MILOT R L,et al. Journal of Physical Chemistry Letters\[J\],2017,8(4):772-778. \[41\]LOCARDI F,CIRRGNANO M,BARANOV D,et al. Journal of the American Chemical Society\[J\],2018,140(40):12989-12995. \[42\]MAHALINGAM V,VETRONE F,NACCACHE R,et al. Advanced Materials\[J\],2009,21(40):4025-4028. \[43\]MOORE E G,SAMUEL A P,RAYMOND K N. Account of Chemical Research\[J\],2009,42(4):542-552. \[44\]MIR W J,SHEIKH T,ARFIN H,et al. NPG Asia Matersials\[J\],2020,12:9. \[45\]HUDRY D,HOWARD I A,POPESCU P,et al. Advanced Matersials\[J\],2019,31(26):1900623. \[46\]ZHOU D,LIU D,PAN G,et al. Advanced Materials\[J\],2017,29(42):1704149. \[47\]PAN G,BAI X,YANG D,et al. Nano Letters\[J\],2017,17(12):8005-8011. \[48\]MILSTEIN T J,KROUPA D M,GAMELIN D R,et al. Nano Letters\[J\],2018,18(6):3792-3799. \[49\]LEE W,HONG S,KIM S,et al. Journal of Physical Chemistry Letters C\[J\],2019,123(4):2665-2672. \[50\]LUO B,LI F,XU K,et al. Journal of Materials Chemistry C\[J\],2019,7:2781-2808. \[51\]MAHOR Y,MIR W J,NAG A. Journal of Physical Chemistry Letters C\[J\],2019,123(25):15787-15793. \[52\]LOCARD F,SARTORI E,BUHA J,et al. American Chemical Society Energy Letters\[J\],2019,4(8):1976-1982. \[53\]RAVI V K,SINGHAI N,NAG A,et al. Journal of Materials Chemistry A\[J\],2018,6:21666-21675. \[54\]MILSTEIN T J,KLUHERZ K T,KROUPA D M,et al. Nano Letters\[J\],2019,19(3):1931-1937. \[55\]MA J P,CHEN Y M,ZHANG L M,et al. Journal of Materials Chemistry C\[J\],2019,7:3037-3048. \[56\]ENDE B M,AARTS L,MEIJERINK A. Advanced Materials\[J\],2009,21(30):3073-3077. \[57\]LI X,DUAN S,LIU H,et al. Journal of Physical Chemistry Letters\[J\],2019,10(3):487-492. \[58\]YAO J S,GE J,HAN B N,et al. Journal of the American Chemical Society\[J\],2018,140(10):3626-3634. \[59\]CHENG Y,SHEN C,SHEN L,et al. American Chemical Society Applied Materials Interfaces\[J\],2018,10(25):21434-21444. \[60\]BABAYIGIT A,THANH D D,ETHIRAJAN A,et al. Scientific Reports\[J\],2016,6:18721. \[61\]ZHANG X,CAO W,WANG W,et al. Nano Energy\[J\],2016,30:511-516. \[62\]VITORETI A B F,AGOURAM S,FUENTE M S,et al. Journal of Physical Chemistry Letters C\[J\],2018,122(25):14222-14231. \[63\]DENG J,WANG H,XUN J,et al. Materials Design\[J\],2020,185:108246. \[64\]STAM W,GEUCHIES J J,ALTANTZIS T,et al.Journal of the American Chemical Society\[J\],2017,139(11):4087-4097. \[65\]LI M,ZHANG X,POSTOLEK K M,et al. Journal of Materials Chemistry C\[J\],2018,6:5506-5513. \[66\]WANG H C,WANG W,TANG A C,et al. Angewandte Chemie\[J\],2017,56(44):13650-13654. \[67\]LIU S,CHEN Y,ZHAO Y,et al. Materials Letters\[J\],2020,259:126857. \[68\]SHANNON R D. Acta Crystallogr Section A Foundations and Advances\[J\],1976,32(5):751-767. \[69\]CHEN J K,MA J P,GUO S Q,et al. Chemistry Materials\[J\],2019,31(11):3974-3983. \[70\]LU M,ZHANG X,ZHANG Y,et al. Advanced Materials\[J\],2018,30(50):1804691. \[71\]BEHERA R K,DUTTA A,GHOSH D,et al.Journal of Physical Chemistry Letters\[J\],2019,10(24):7916-7921. \[72\]BEGUM R,PARIDA M R,ABDELHADY A L,et al. Journal of the American Chemical Society\[J\],2017,139(2):731-737. \[73\]RAO L,DING X,DU X,et al. Beilstein Journal of Nanotechnology\[J\],2019,10:666-676. \[74\]MONDAL N,DE A,SAMANTA A. American Chemical Society Energy Letters\[J\],2019,4(1):32-39. \[75\]DE A,DAS S,MONDAL N,et al. American Chemical Society Materials Letters\[J\],2019,1(1):116-122. \[76\]BI C,WANG S,LI Q,et al. Journal of Physical Chemistry Letters\[J\],2019,10(5):943-952. \[77\]CHEN Y C,CHOU H L,LIN J C,et al. Journal of Physical Chemistry Letters C\[J\],2019,123(4):2353-2360. \[78\]SHEN X,ZHANG Y,KERSHAW S V,et al. Nano Letters\[J\],2019,19(3):1552-1559.

备注/Memo

备注/Memo:
收稿日期:2021-10-10修回日期:2022-03-04 基金项目:国家自然科学基金资助项目(22005034,21701015,21811530054) 第一作者:顾婉莹,女,1999年生,硕士 通讯作者:李红博,男,1982年生,教授,博士生导师, Email:hongbo.li@bit.edu.cn
更新日期/Last Update: 2023-09-28