[1]温飞娟,谭春梅,温奇飞,等.增材制造金属结构件残余应力的研究进展[J].中国材料进展,2024,43(01):066-78.[doi:10.7502/j.issn.1674-3962.202112026]
 WEN Feijuan,TAN Chunmei,WEN Qifei,et al.Research Progress on Residual Stress of Metal Structure by Additive Manufacturing[J].MATERIALS CHINA,2024,43(01):066-78.[doi:10.7502/j.issn.1674-3962.202112026]
点击复制

增材制造金属结构件残余应力的研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第01期
页码:
066-78
栏目:
出版日期:
2024-01-25

文章信息/Info

Title:
Research Progress on Residual Stress of Metal Structure by Additive Manufacturing
文章编号:
1674-3962(2024)01-0066-13
作者:
温飞娟谭春梅温奇飞龙樟邓荣
1. 西南石油大学工程学院,四川 南充 6370002. 西安展实检测工程有限公司,陕西 西安 710018
Author(s):
WEN Feijuan TAN Chunmei WEN Qifei LONG Zhang DENG Rong
1. School of Engineering, Southwest Petroleum University, Nanchong 637000, China2. Xi’an Zhanshi Testing Engineering Co., Ltd.,Xi’an 710018, China
关键词:
增材制造残余应力应力调控激光选区熔化电弧增材制造
Keywords:
additive manufacturing residual stress stress control selective laser melting wire and arc additive manufacturing
分类号:
TG404;TG665
DOI:
10.7502/j.issn.1674-3962.202112026
文献标志码:
A
摘要:
增材制造技术近年来取得了重大进展,金属增材制造可以三维成型精度高的复杂形状零件,在各行业的应用中具有独特优势。然而,增材制造金属零件成形时由于高温度梯度会引起复杂残余应力。简要分析了增材制造技术的特点,重点总结了激光选区熔化和电弧增材制造的工艺原理。在此基础上,详细综述了增材制造过程中残余应力的产生机制及测量方法,其中,温度梯度机制是解释残余应力产生机制最常用的方法。针对残余应力的测量,分别从无损检测和破坏性检测两方面进行归纳,最常用的破坏性检测残余应力的方法是轮廓法和钻孔法,而无损检测的方法是X射线衍射法。并且总结了残余应力的调控方法,包括工艺参数调控、预热缓冷及重熔调控、结构设计调控、辅助外场调控、后处理调控。最后简要总结增材制造金属结构件残余应力研究中亟待解决的问题,并展望了金属增材制造的发展方向。
Abstract:
Additive manufacturing has made significant progress in recent years, and metal additive manufacturing can 3D fabricate complex-shaped parts with high precision, which has unique advantages in applications of various industries.However, the high temperature gradient in the forming of metal additive manufacturing parts can cause complex residual stresses. In this review, the characteristics of additive manufacturing technology are briefly analyzed, and the processing principles of selective laser melting and wire and arc additive manufacturing technology are emphatically summarized. On this basis, the generation mechanism and measurement method of residual stress from the additive manufacturing process are reviewed in detail. The temperature gradient mechanism is the most commonly used method to explain the residual stress generation. Regarding the measurement of residual stress, it is summarized from two aspects of non-destructive testing and destructive testing. The common destructive testing methods for residual stress are profile method and drilling method, while the common non-destructive testing method is X-ray diffraction method. The control methods of residual stress are also summarized, including processing parameters optimization,preheating and slow cooling and remelting, structural design,auxiliary external field, post-processing. Finally, a brief summary of the residual stress research in additive manufacturing of metal structural parts and the problems to be solved are summarized, and the development direction of additive manufacturing is prospected.

参考文献/References:

\[1\]赵剑峰, 谢德巧, 梁绘昕, 等. 南京航空航天大学学报\[J\], 2019, 51(1):1-6.ZHAO J F, XIE D Q, LIANG H X, et al. Journal of Nanjing University of Aeronautics & Astronautics\[J\], 2019, 51(1):1-6.\[2\]凌人蛟, 王姗, 陈晖. 机械工程师\[J\], 2019(1): 128-130.LING R J, WANG S, CHEN H. Mechanical Engineer\[J\], 2019(1): 128-130.\[3\]张咪娜. 增材制造CoCrMoNbTi与AlCoCuFeNi高熵合金及其组织性能研究\[D\]. 北京: 北京科技大学, 2019.ZHANG M N. Additive Manufacturing of CoCrMoNbTi and AlCoCuFeNi High Entropy Alloys and Microstructure and Properties Research\[D\]. Beijing: University of Science and Technology Beijing, 2019.\[4\]GOPAN V, WINS K, SURENDRAN A. CIRP Journal of Manufacturing Science and Technology\[J\], 2021, 32: 228-248.\[5\]杨冰, 廖贞, 吴圣川, 等. 交通运输工程学报\[J\], 2021, 21(1): 132-153.YANG B, LIAO Z, WU S C, et al. Journal of Traffic and Transportation Engineering\[J\], 2021, 21(1): 132-153.\[6\]刘江伟, 国凯, 王广春, 等. 激光杂志\[J\], 2020, 41(3): 6-16.LIU J W, GUO K, WANG G C, et al. Laser Journal\[J\], 2020, 41(3): 6-16.\[7\]周玥丞, 赵阳. 建筑结构学报\[J\], 2021, 42(6): 15-25.ZHOU Y C, ZHAO Y. Journal of Building Structures\[J\], 2021, 42(6): 15-25.\[8\]樊恩想, 刘小欣, 廖文俊, 等. 机械制造\[J\], 2019, 57(4): 1-6+10.FAN E X, LIU X X, LIAO W J, et al. Machinery\[J\], 2019, 57(4): 1-6+10.\[9\]PRATHEESH KUMAR S, ELANGOVAN S, MOHANRAJ R, et al. Materials Today: Proceedings\[J\], 2021, 46: 7907-7920.\[10\]秋大闯, 李多生, 叶寅, 等. 功能材料\[J\], 2019, 50(3): 3049-3058.QIU D C, LI D S, YE Y, et al. Journal of Functional Materials\[J\], 2019, 50(3): 3049-3058.\[11\]常坤, 梁恩泉, 张韧, 等. 材料导报\[J\], 2021, 35(3): 3176-3182.CHANG K, LIANG E Q, ZHANG R, et al. Materials Reports\[J\], 2021, 35(3): 3176-3182.\[12\]杨亮亮. 基于高速摄影技术的激光选区熔化飞溅行为和熔池特征研究\[D\]. 武汉: 华中科技大学, 2019.YANG L L. Research on Laser Selective Melting Splash Behavior and Melt Pool Characteristics Based on HighSpeed Photography Technology\[D\]. Wuhan: Huazhong University of Science and Technology, 2019.\[13\]祝弘滨, 刘昱. 现代城市轨道交通\[J\], 2019(10): 77-81.ZHU H B, LIU Y. Modern Urban Transit\[J\], 2019(10): 77-81.\[14\]万志远, 陈银平. 模具技术\[J\], 2020(1): 59-63.WAN Z Y, CHEN Y P. Die and Mould Technology\[J\], 2020(1): 59-63.\[15\]王勇, 周雪峰. 激光技术\[J\], 2021, 45(4): 475-484.WANG Y, ZHOU X F. Laser Technology\[J\], 2021, 45(4): 475-484.\[16\]ACEVEDO R, SEDLAK P, KOLMAN R, et al. Journal of Materials Research and Technology\[J\], 2020, 9(4): 9457-9477.\[17\]乐方宾, 叶寒, 刘勇. 江西科学\[J\], 2020, 38(2): 157-161+262.LE F B, YE H, LIU Y. Jiangxi Science\[J\], 2020, 38(2): 157-161+262.\[18\]谢瑞山, 陈高强, 史清宇. 精密成形工程\[J\], 2019, 11(4): 15-20.XIE R S, CHEN G Q, SHI Q Y. Journal of Netshape Forming Engineering\[J\], 2019, 11(4): 15-20.\[19\]马振书, 陈广森, 马东玺, 等. 兵器材料科学与工程\[J\], 2016, 39(6): 119-124.MA Z S, CHEN G S, MA D X, et al. Ordnance Material Science and Engineering\[J\], 2016, 39(6): 119-124.\[20\]姜海燕, 林卫凯, 吴世彪, 等. 机械工程与自动化\[J\], 2019(5):223-226.JIANG H Y, LIN W K, WU S B, et al. Mechanical Engineering & Automation\[J\], 2019(5): 223-226.\[21\]SHIYAS K A, RAMANUJAM R. Materials Today: Proceedings\[J\], 2021, 46: 1429-1436.\[22\]HE Q Y, XIA H Q, LIU J H, et al. Materials & Design\[J\], 2020, 196: 109115.\[23\]ZHANG Z D, HUANG Y Z, ADHITAN R K, et al. Optics & Laser Technology\[J\], 2018, 109: 297-312.\[24\]姚波, 马良, 陈静, 等. 机械科学与技术\[J\], 2022, 41(6): 961-970. YAO B, MA L, CHEN J, et al. Mechanical Science and Technology for Aerospace Engineering\[J\], 2022, 41(6): 961-970.\[25\]余圣甫, 禹润缜, 何天英, 等. 中国材料进展\[J\], 2021, 40(3): 198-209.YU S F, YU R Z, HE T Y, et al. Materials China\[J\], 2021, 40(3): 198-209.\[26\]DING D H, ZHANG S M, LU Q H, et al. Materials Today Communications\[J\], 2021, 27(1): 102430.\[27\]SUN J M, HENSEL J, KHLER M, et al. Journal of Manufacturing Processes\[J\], 2021, 65(5): 97-111.\[28\]李九霄, 李鸣佩, 杨东野, 等. 机械工程材料\[J\], 2018, 42(8): 1-6.LI J X, LI M P, YANG D Y, et al. Materials for Mechanical Engineering\[J\], 2018, 42(8): 1-6.\[29\]LI C, LIU Z Y, FANG X Y, et al. Procedia CIRP\[J\], 2018, 71: 348-353.\[30\]陈勇, 陈辉, 姜亦帅, 等. 材料工程\[J\], 2019, 47(11): 1-10.CHEN Y, CHEN H, JIANG Y S, et al. Journal of Materials Engineering\[J\], 2019, 47(11): 1-10.\[31\]杜畅, 张津, 连勇, 等. 表面技术\[J\], 2019, 48(1): 200-207.DU C, ZHANG J, LIAN Y, et al. Surface Technology\[J\], 2019, 48(1): 200-207.\[32\]PIDGE A P, KUMAR H. Materials Today: Proceedings\[J\], 2020, 21: 1689-1694.\[33\]HNNIGE J R, COLRGROVE P A, AHMAD B, et al. Materials & Design\[J\], 2018, 150: 193-205.\[34\]AZARMI F, SEVOSTIANOV I. Current Opinion in Chemical Engineering\[J\], 2020, 28: 21-27.\[35\]LIU C, LIN C H, WANG J F, et al. Journal of Manufacturing Processes\[J\], 2020, 56: 474-481.\[36\]ROBINSON J, ASHTON I, FOX P, et al. Additive Manufacturing\[J\], 2018, 23: 13-24.\[37\]MAROLA S, BOSIA S, VELTOR A, et al. Materials & Design\[J\], 2021, 202: 109550.\[38\]AN K, YUAN L, DIAL L, et al. Materials & Design\[J\], 2017, 135: 122-132.\[39\]SHEN C, REID M, LISS K D, et al. Additive Manufacturing\[J\], 2019, 29: 100774.\[40\]ZHAO L, SANTOS M J G, DOLIMONT A, et al. Additive Manufacturing\[J\], 2020, 36: 101499.\[41\]ZHAN Y, LIU C, ZHANG J J, et al. Materials Science and Engineering: A\[J\], 2019, 762: 138093.\[42\]郭玉. 激光增材制造GH4169高温合金温度场应力场研究\[D\]. 呼和浩特:内蒙古工业大学, 2020.GUO Y. Study on Temperature and Stress Field of Laser Additive Manufacturing of GH4169 Superalloy\[D\]. Huhhot:Inner Mongolia University of Technology, 2020.\[43\]李桂伟. 金属玻璃选区激光熔化与超声增材制造研究\[D\]. 长春:吉林大学, 2020.LI G W. Research on Selective Laser Melting and Ultrasonic Additive Manufacturing of Metallic Glass\[D\]. Changchun: Jilin University, 2020.\[44\]BARTLETT J L, CROOM B P, BUPDICK J, et al. Additive Manufacturing\[J\], 2018, 22: 1-12.\[45\]BIEGLAR M, GRAF B, RETHMEIER M. Additive Manufacturing\[J\], 2018, 20: 101-110.\[46\]赵宇辉, 赵吉宾, 王志国, 等. 真空\[J\], 2020, 57(3): 73-79.ZHAO Y H, ZHAO J B, WANG Z G, et al. Vacuum\[J\], 2020, 57(3): 73-79.\[47\]BHUVANESH K M, SATHIYA P. ThinWalled Structures\[J\], 2021, 159: 107228.\[48\]FANG Z C, WU Z L, HUANG C G, et al. Optics & Laser Technology\[J\], 2020, 129: 106283.\[49\]NADAMMAL N, MISHUROVE T, FRITSCH T, et al. Additive Manufacturing\[J\], 2021, 38: 101792.\[50\]RASUL N G, KALYAN P B, SAHOO S. Materials Today: Proceedings\[J\], 2021, 41: 445-450.\[51\]BIAN P Y, SHI J, LIU Y, et al. Optics & Laser Technology\[J\], 2020, 132: 106477.\[52\]CHEN Q, LIU J K, LIANG X, et al. Computer Methods in Applied Mechanics and Engineering\[J\], 2020, 360: 112719.\[53\]MATTHEWS M J, ROEHLING T T, KHAIRALIAH S A, et al. Procedia CIRP\[J\], 2020, 94: 200-204.\[54\]PROMOPPATUM P, YAO S C. Journal of Manufacturing Processes\[J\], 2020, 49: 247-259.\[55\]李少海, 李昭青. 特种铸造及有色合金\[J\], 2018, 38(2): 160-163.LI S H, LI Z Q. Special Casting & Nonferrous Alloys\[J\], 2018, 38(2): 160-163.\[56\]庄荣宇. 面向增材制造的自支撑结构多尺度拓扑优化方法研究\[D\]. 武汉:华中科技大学, 2017.ZHUANG R Y. Research on MultiScale Topology Optimization Method of SelfSupporting Structure for Additive Manufacturing\[D\]. Wuhan: Huazhong University of Science and Technology, 2017.\[57\]秦天, 葛沈瑜, 黄进浩, 等. 材料开发与应用\[J\], 2016, 31(2): 94-102.QIN T, GE S Y, HUANG J H, et al. Development and Application of Materials\[J\], 2016, 31(2): 94-102.\[58\]SUN L, REN X B, HE J Y, et al. Journal of Materials Science & Technology\[J\], 2021, 67: 11-22.\[59\]CHENG L, LIANG X, BAI J X, et al. Additive Manufacturing\[J\], 2019, 27: 290-304.\[60\]蒋聪, 鲍毅超. 机械工程与自动化\[J\], 2021(1): 29-30+33.JIANG C, BAO Y C. Mechanical Engineering & Automation\[J\], 2021(1): 29-30+33.\[61\]任朝晖, 刘振, 张小双, 等. 东北大学学报(自然科学版)\[J\], 2019, 40(11): 1590-1594+1599.REN Z H, LIU Z, ZHANG X S, et al. Journal of Northeastern University (Natural Science)\[J\], 2019, 40(11): 1590-1594+1599.\[62\]许欣欣, 贺文雄, 秦晋, 等. 中国表面工程\[J\], 2019, 32(5): 127-135.XU X X, HE W X, QIN J, et al. China Surface Engineering\[J\], 2019, 32(5): 127-135.\[63\]ZHOU C P, WANG J D, GUO C H, et al. International Journal of Mechanical Sciences\[J\], 2021, 197: 106334.\[64\]KALENTICS N, BOILLAT E, PEYRE P, et al. Materials & Design\[J\], 2017, 130: 350-356.\[65\]HNNIGE J R, COLEGROVE P A, GANGULY S, et al. Additive Manufacturing\[J\], 2018, 22: 775-783.\[66\]PRAGANA J P M, SAMPIAO R F V, BRAGANCA I M F, et al. Advances in Industrial and Manufacturing Engineering\[J\], 2021, 2: 100032.\[67\]ROEHLING J D, SMITH W L, ROEHLING T T, et al. Additive Manufacturing\[J\], 2019, 28: 228-235.\[68\]ZHANG S, GONG M C, ZENG X Y, et al. Journal of Materials Processing Technology\[J\], 2021, 293: 117077.\[69\]COLEGROVE P A, DONOGHUE J, MARTINA F, et al. Scripta Materialia\[J\], 2017, 135: 111-118.\[70\]MALEKI E, BAGHERIFARD S, BANDINI M, et al. Additive Manufacturing\[J\], 2021, 37: 101619.\[71\]CHI J X, CAI Z Y, WAN Z D, et al. Surface and Coatings Technology\[J\], 2020, 396: 125908.\[72\]OBRIEN J M, MONTGOMERY S, YAGHI A, et al. CIRP Journal of Manufacturing Science and Technology\[J\], 2021, 32: 266-276.

备注/Memo

备注/Memo:
收稿日期:2021-12-28修回日期:2022-05-31基金项目:南充市西南石油大学市校科技战略合作专项(23XNSYSX0112, 23XNSYSX0092);教育部2021年第一批产学合作协同育人项(202101398047,202102500012)第一作者:温飞娟,女,1993年生,讲师通讯作者:龙樟,男,1992年生,讲师,Email:longzhang@swpu.edu.cn
更新日期/Last Update: 2023-12-29