[1]杨浩邈.亚麻植物纤维与树脂动态润湿及其表面浸润粗糙水平分析[J].中国材料进展,2024,43(07):666-672.[doi:10.7502/j.issn.1674-3962.202206014]
 YANG Haomiao.Analysis of Dynamic Wetting of Flax Plant Fiber/Resin and the Roughness Level of Fiber by Surface Wetting[J].MATERIALS CHINA,2024,43(07):666-672.[doi:10.7502/j.issn.1674-3962.202206014]
点击复制

亚麻植物纤维与树脂动态润湿及其表面浸润粗糙水平分析()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第07期
页码:
666-672
栏目:
出版日期:
2024-07-30

文章信息/Info

Title:
Analysis of Dynamic Wetting of Flax Plant Fiber/Resin and the Roughness Level of Fiber by Surface Wetting
文章编号:
1674-3962(2024)07-0666-07
作者:
杨浩邈
1. 贵州民族大学机电工程学院,贵州 贵阳 550025 2. 重庆文理学院机电工程学院,重庆 402160
Author(s):
YANG Haomiao
1. College of Mechanical and Electronics Engineering, Guizhou Minzu University, Guiyang 550025, China 2. College of Mechanical and Electronics Engineering, Chongqing University of Arts and Sciences,Chongqing 402160, China
关键词:
复合材料亚麻纤维动态润湿粗糙水平粘附功
Keywords:
composite flax fiber dynamic wetting roughness level adhesion work
分类号:
TB332
DOI:
10.7502/j.issn.1674-3962.202206014
文献标志码:
A
摘要:
分析了作为复合材料增强体使用的天然亚麻植物纤维的动态润湿过程,观测了植物纤维及其预浸渍纤维纱线表面形貌,探讨植物纤维与不同液体体系(去离子水,环氧树脂)的润湿特征,并与使用广泛的玻璃纤维动态润湿过程进行比较。基于Wilhelmy法,通过在极低速率下建立纤维与树脂动态润湿系统及浸润力学模型,结合流场函数和表面轮廓中线平均算术偏差粗糙度理论方法,运用方差分析技术提出了定量判断增强体纤维表面固有粗糙水平的新方法。分析探讨了亚麻植物纤维和玻璃纤维与浸润液体的粘附功。结果表明:作为复合材料增强体,亚麻植物纤维表面粗糙因子更大,亚麻植物纤维动态润湿过程润湿力、粘附功较小,同等条件下,相比玻璃纤维具有较差的润湿性能。
Abstract:
In this paper, the dynamic wetting process of natural flax plant fiber used as composite reinforcement is analyzed, the surface morphology of plant fiber and its preimpregnated fiber yarn is observed. The wetting characteristics of plant fiber with different liquid systems (DI water, epoxy resin) are discussed, and compared with the dynamic wetting process of widely used glass fiber. Based on Wilhelmy method, a new quantitative judgment method to identify the inherent roughness level of fiber reinforcement surface is proposed by establishing the dynamic wetting system and wetting mechanic model of fiber and resin at very low rate, combined with the stream function and the roughness theory of arithmetical mean deviation of the surface profile midline, and using the variance analysis technology. The adhesion work of flax plant fiber and glass fiber with wetting liquids was analyzed and discussed. The results show that, as composite reinforcements, the surface roughness factor of flax plant fiber is bigger and the wetting force/adhesion work of flax plant fiber in the dynamic wetting process are smaller. At the same condition, flax plant fiber has poor wetting performance compared with glass fiber.

参考文献/References:

\[1\]MORE A P.Advanced Composites and Hybrid Materials\[J\], 2022, 5(3): 1-20. \[2\]PICKERING K L, ARUAN EFENDY M G, LE T M.Composites Part A: Applied Science and Manufacturing\[J\], 2016, 83:98-112. \[3\]KOLLIA A, KONTAXIS L C, PAPANICOLAOU G C,et al. Journal of Applied Polymer Science\[J\], 2020, 137(14): 1-11. \[4\]崔广朋. 亚麻纤维热塑性复合材料热压工艺优化\[D\]. 大连:大连理工大学,2020. CUI G P. Optimization of the Hot Pressing Process for Preparing Flax Fiber/PE Thermoplastic Composite\[D\]. Dalian:Dalian University of Technology,2020. \[5\]ANWAR M, MUSTAPHA F, SULTAN M,et al. Frontiers in Materials\[J\], 2021, 8: 1-11. \[6\]FARIS M A, SAPUAN S M, ANWER T,et al. Synthetic Metals\[J\], 2015, 206: 42-54. \[7\]钱伯章. 合成纤维\[J\], 2021, 50(1): 57. QIAN B Z. Synthetic Fiber in China\[J\], 2021, 50(1): 57. \[8\]RICHARD F, POILNE C, YANG H M,et al. Composites Science and Technology\[J\], 2018, 167: 396-403. \[9\]郝建群. 亚麻纤维复合材料的粘弹性能研究\[D\].南京:南京航空航天大学, 2020. HAO J Q. Study on Viscoelastic Property of Flax Fiber Reinforced Polymer Composite\[D\]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. \[10\]CANTERO G, ARBELAIZ A, LLANOPONTE R,et al. Composites Science and Technology\[J\], 2003, 63(9): 1247-1254. \[11\]刘雪强,李志刚,潘国立.中国材料进展\[J\], 2024, 43(5): 448-456. LIU X Q,LI Z G,PAN G L. Materials China\[J\], 2024, 43(5): 448-456. \[12\]GUAN D S, CHARLAIX E, TONG P G.Physical Review Letters\[J\], 2020, 124(18): 5. \[13\]刘斌,谢兰生,陈明和.表面技术\[J\], 2021, 51(6): 382-389. LIU B,XIE L S,CHEN M H. Surface Technology\[J\], 2021, 51(6): 382-389. \[14\]黄学武. 超浸润聚氨酯纤维复合材料的制备及其在油水分离中的应用研究\[D\]. 扬州:扬州大学,2021. HUANG X W. Preparation of Superwetting Polyurethane Nanofiber Composites and Their Application in Oil/Water Separation\[D\]. Yangzhou: Yangzhou University, 2021. \[15\]杨浩邈, 刘娜, 孙静,等. 玻璃钢/复合材料\[J\], 2014(1): 17-23. YANG H M, LIU N, SUN J, et al. Fiber Reinforced Plastics and Composites\[J\], 2014(1):17-23. \[16\]宋碧海, 宋少佩. 测量液体在固体表面的前进接触角、后退接触角以及滞留力的方法及其装置:CN105352856A\[P\]. 2016-02-24. SONG B H, SONG S P. Method and Device for Measuring Advancing Contact Angle, Receding Contact Angle and Retention Force of Liquid on Solid Surface: CN105352856A\[P\]. 2016-02-24. \[17\]曹炳阳,杨敏. 一种测量极低毛细数下动态接触角的方法及系统:CN107314952A\[P\]. 2019-06-18. CAO B Y, YANG M. A Method and System for Measuring Dynamic Contact Angle under Very Low Capillary Number: CN107314952A\[P\]. 2019-06-18. \[18\]KOKSHAROV S, ALEEVA S, LEPILOVA O.Autex Research Journal\[J\], 2015, 15(3): 215-225. \[19\]GIBSON L J.Journal of the Royal Society Interface\[J\], 2012, 9: 2749-2766. \[20\]杨浩邈, 曾庆文, 张南夷,等. 复合材料学报\[J\], 2014, 31(2): 6. YANG H M, ZENG Q W, ZHANG N Y, et al. Acta Materiae Compositae Sinica\[J\], 2014, 31(2): 6. \[21\]KARIM A M, KAVEHPOUR H P.Colloids and Surfaces A: Physicochemical & Engineering Aspects\[J\], 2018, 548: 54-60. \[22\]WENZEL R N.Industrial and Engineering Chemistry\[J\], 1936, 28(8): 988-994. \[23\]POCIUS A V. Adhesion and Adhesives Technology: An Introduction\[M\]. Munich: Carl Hanser Verlag, 2012:104-105. \[24\]杨浩邈, 黄鹏, 吴鹏,等. 机械工程材料\[J\], 2014, 38(10): 50-53. YANG H M, HUANG P, WU P, et al. Materials for Mechanical Engineering\[J\], 2014, 38(10): 50-53. \[25\]曹芳维, 李敏, 王绍凯,等. 复合材料学报\[J\], 2011, 28(4): 23-28. CAO F W, LI M, WANG S K, et al. Acta Materiae Compositae Sinica\[J\], 2011, 28(4): 23-28. \[26\]孙向玲. 天然纤维素纤维对油液介质的吸附性能研究\[D\]. 上海:东华大学, 2010. SUN X L. Study on the Surface Adsorption Characteristics of Natural Cellulose Fiber to Oil\[D\]. Shanghai: Donghua University, 2010. \[27\]ISLAM M S. The Influence of Fibre Processing and Treatments on Hemp Fibre/Epoxy and Hemp Fibre/Pla Composites\[D\]. Hamilton, New Zealand: The University of Waikato, 2008. \[28\]曹晓平. 流体在粗糙固体表面的浸润及其滞后现象\[D\]. 长沙:中南大学, 2005. CAO X P. Wetting and Hysteresis of Fluid on Rough Solid Surface\[D\]. Changsha:Central South University, 2005.

备注/Memo

备注/Memo:
收稿日期:2022-06-22修回日期:2022-10-17 基金项目:重庆市教育委员会科学技术研究计划2018科技 项目(KJQN201801338) 作者简介:杨浩邈,男,1983年生,博士, yyhhmmyyhhmm1@ outlook. com
更新日期/Last Update: 2024-06-26