[1]童永仲,潘绍武,朱美芳.氢键/二硫键协同的室温修复聚氨酯的制备及性能研究[J].中国材料进展,2024,43(07):658-665.[doi:10.7502/j.issn.1674-3962.202303011]
 TONG Yongzhong,PAN Shaowu,ZHU Meifang.Preparation of Room-Temperature Healable Polyurethanes Based on Synergistic Hydrogen Bonds/Disulfide Bonds and Study on Their Properties[J].MATERIALS CHINA,2024,43(07):658-665.[doi:10.7502/j.issn.1674-3962.202303011]
点击复制

氢键/二硫键协同的室温修复聚氨酯的制备及性能研究()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期数:
2024年第07期
页码:
658-665
栏目:
出版日期:
2024-07-30

文章信息/Info

Title:
Preparation of Room-Temperature Healable Polyurethanes Based on Synergistic Hydrogen Bonds/Disulfide Bonds and Study on Their Properties
文章编号:
1674-3962(2024)07-0658-08
作者:
童永仲潘绍武朱美芳
东华大学材料科学与工程学院 纤维材料改性国家重点实验室,上海 201620
Author(s):
TONG YongzhongPAN ShaowuZHU Meifang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Material Science and Engineering,Donghua University,Shanghai 201620,China
关键词:
室温自修复聚氨酯硬段力学性能氢键二硫键
Keywords:
room-temperature self-healingpolyure-thaneshard segmentsmechanical propertieshydrogen bondsdisulfide bonds
分类号:
TQ317
DOI:
10.7502/j.issn.1674-3962.202303011
文献标志码:
A
摘要:
自修复材料作为一类新兴的智能材料,具有广泛的应用前景,然而此类材料难以兼具良好的力学性能与自修复能力。以聚四氢呋喃(PTMEG)为软段、异佛尔酮二异氰酸酯(IPDI)和双(4-羟苯基)二硫醚(4-HD)为扩链剂共同构成硬段,通过两步扩链反应制备了室温自修复聚氨酯(PUHD),并分别研究了单体配比与扩链剂的分子结构对PUHD的力学与自修复性能的影响。结果表明:当R值(R=\[IPDI\]/\[PTMEG\])为1.5时,PUHD的综合性能最佳,拉伸强度、断裂伸长率与韧性分别为7.53 MPa、1447.80%与31.98 MJ/m3。PUHD-1.5具有良好的流变性能,在25与60 ℃下的特征弛豫时间分别为23.45与7.10 min,在25 ℃下修复6 h,断裂伸长率与拉伸强度的修复效率分别为95.29%和89.95%。扩链剂的分子结构对PUHD的自修复性能有显著影响,弱氢键作用与松散堆积的硬段有利于提高PUHD的自修复性能。
Abstract:
As a new kind of intelligent material,self-healing materials have a widespread application prospect.However,it is difficult to have both good mechanical properties and selfhealing ability.Here,using polytetrahydrofuran(PTMEG)as soft segments,isophorone diisocyanate(IPDI)and bis(4-hydroxyphenyl)disulfide(4-HD)as chain extenders constructing hard segments together,a room-temperature selfhealing polyurethane(PUHD)was prepared by two-step chain extension reaction.The effects of monomer ratio and molecular structures of chain extenders on the mechanical and selfhealing properties of PUHD were studied.The results showed that PUHD had the best comprehensive performance when the R value(R=\[IPDI\]/\[PTMEG\])is 1.5.The tensile strength,elongation at break and toughness reached 7.53 MPa,1447.80% and 31.98 MJ/m3,respectively.PUHD-1.5 had good rheological properties with characteristic relaxation time of 23.45 and 7.10 min at 25 and 60 ℃,respectively.The self-healing efficiency of elongation at break and tensile strength were 95.29% and 89.95% at 25 ℃ for 6 h,respectively.The molecular structures of chain extenders have a significant effect on the self-healing ability of PUHD.Weak interaction of hydrogen bonds and loosely-packed hard segments are beneficial to improve the self-healing properties of PUHD.

参考文献/References:

\[1\]XU Z,CHEN L,LU L,et al.Advanced Functional Materials\[J\],2021,31(1):2006432. \[2\]KRISADA A A,DANIEL C.Chemical Engineering Journal\[J\],2023,452:139055. \[3\]ZHOU S,DENG K,XU Z,et al.Chemical Engineering Journal\[J\],2022,442:136083. \[4\]WANG J,LAI J,JIA X,et al.Journal of Materials Chemistry C\[J\],2022,10(30):10895-10901. \[5\]XU W,WONG M C,GUO Q,et al.Journal of Materials Chemistry A\[J\],2019,7(27):16267-16276. \[6\]LI F,XU Z,HU H,et al.Chemical Engineering Journal\[J\],2021,410:128363. \[7\]KHATIB M,ZOHAR O,SALIBA W,et al.Advanced Functional Materials\[J\],2020,30(22):1910196. \[8\]GUO Y,YANG L,ZHANG L,et al.Advanced Functional Materials\[J\],2021,31(50):2106281. \[9\]LI Z,ZHU Y L,NIU W,et al.Advanced Materials\[J\],2021,33(27):2101498. \[10\]WANG D,XU J,CHEN J,et al.Advanced Functional Materials\[J\],2020,30(3):1907109. \[11\]LI J,NIU H,YU Y,et al.ACS Applied Polymer Materials\[J\],2021,3(7):3373-3382. \[12\]SONG Y,LIU Y,QI T,et al.Angewandte Chemie International Edition\[J\],2018,57(42):13838-13842. \[13\]张幼维,朱文凡,李闯,等. 中国材料进展\[J\],2023,42(7):566-574. ZHANG Y W, ZHU W F, LI C,et al.Materials China\[J\],2023,42(7):566-574. \[14\]YANG Z,SUN D.Journal of Applied Polymer Science\[J\],2020,137(45):49413. \[15\]ZHANG J,ZHANG C,SONG F,et al.Chemical Engineering Journal\[J\],2022,429:131848. \[16\]GUO H,HAN Y,ZHAO W,et al.Nature Communications\[J\],2020,11(1):2037. \[17\]KANG J,SON D,WANG GJ N,et al.Advanced Materials\[J\],2018,30(13):1706846. \[18\]ZHANG L,LIU Z,WU X,et al.Advanced Materials\[J\],2019,31(23):2006432. \[19\]CAO P F,LI B,HONG T,et al.Advanced Functional Materials\[J\],2018,28(22):1800741. \[20\]YE G,QIU J,FANG X,et al.Materials Horizons\[J\],2021,8(3):1047-1057. \[21\]CHENG Y,CHAN K H,WANG X Q,et al.Advanced Functional Materials\[J\],2021,31(32):2101825. \[22\]RONG J,ZHONG J,YAN W,et al.Polymer\[J\],2021,221:123625. \[23\]QU Q,WANG H,HE J,et al.Soft Matter\[J\],2020,16(39):9128-9139. \[24\]HU J,MO R,SHENG X,et al.Polymer Chemistry\[J\],2020,11(14):2585-2594. \[25\]XIE J,FAN L,YAO D,et al.Materials Today Chemistry\[J\],2022,23(14):100708. \[26\]LI Y,LI W,SUN A,et al.Materials Horizons\[J\],2021,8(1):267-275. \[27\]PENG Y J,HE X,WU Q,et al.Polymer\[J\],2018,149:154-163.

备注/Memo

备注/Memo:
收稿日期:2023-03-20修回日期:2023-05-03 基金项目:国家自然科学基金资助项目(52103252,52090033) 第一作者:童永仲,男,1996年生,硕士研究生 通讯作者:潘绍武,男,1987年生,研究员,博士生导师, Email:pansw@dhu.edu.cn
更新日期/Last Update: 2024-06-26