[1]王亚玲,闫翎鹏,董海亮,等.封装对聚合物太阳能电池性能和稳定性的影响[J].中国材料进展,2023,42(05):398-405.[doi:10.7502/j.issn.1674-3962.202206016]
 WANG Yaling,YAN Lingpeng,DONG Hailiang,et al.Encapsulation Effect on Performance and Stability of Organic Solar Cells[J].MATERIALS CHINA,2023,42(05):398-405.[doi:10.7502/j.issn.1674-3962.202206016]
点击复制

封装对聚合物太阳能电池性能和稳定性的影响()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第05期
页码:
398-405
栏目:
出版日期:
2023-05-30

文章信息/Info

Title:
Encapsulation Effect on Performance and Stability of Organic Solar Cells
文章编号:
1674-3962(2023)05-0398-08
作者:
王亚玲123闫翎鹏4董海亮2韩云飞3杨永珍2马昌期3许并社2
1.中北大学能源与动力工程学院,山西 太原 030051 2.太原理工大学 新材料界面科学与工程教育部重点实验室,山西 太原 030024 3.中国科学院苏州纳米技术与纳米仿生研究所 印刷电子研究中心,江苏 苏州 215123 4.太原理工大学材料科学与工程学院,山西 太原 030024
Author(s):
WANG Yaling123 YAN Lingpeng4 DONG Hailiang2 HAN Yunfei3YANG Yongzhen2 MA Changqi3 XU Bingshe2
1. School of Energy and Power Engineering,North University of China,Taiyuan 030051,China 2. Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education, Taiyuan University of Technology,Taiyuan 030024,China 3. Printed Electronics Research Center,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences (CAS),Suzhou 215123,China 4. College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China
关键词:
封装聚合物太阳能电池UV胶三氧化钼乙烯醋酸乙烯酯共聚物
Keywords:
encapsulation organic solar cells UV glue molybdenum(VI) oxide ethylenevinyl acetate copolymer
分类号:
TM914. 4
DOI:
10.7502/j.issn.1674-3962.202206016
文献标志码:
A
摘要:
为了提高有机光伏器件的寿命,通常采用封装技术来限制太阳能电池在水氧中的暴露程度。尽管聚合物太阳能电池(organic solar cells,OSCs)封装领域的相关研究已取得系列进展,但文献中很少研究封装过程带来的损伤。以经典的聚-3已基噻吩为给体,[6,6]-苯基-C61-丁酸甲酯为受体,通过将哌嗪作为第三组分提高器件稳定性,以氧化锌(ZnO)和三氧化钼(MoO3)为传输层材料制备倒置结构OSCs,系统考察大规模卷对卷器件封装中常用的紫外线(ultraviolet,UV)固化粘合剂对器件光电转化效率和稳定性的影响。结果表明,随着辐照时间的延长,UV胶封装器件的性能(开路电压、短路电流密度、填充因子和光电转化效率)呈持续下降趋势,更换MoO3/Al电极后老化器件性能恢复,证实MoO3/Al界面破坏是器件性能衰减的重要原因。激光束诱导电流成像显示UV胶封装出现由边缘向中心的失效过程。据此,提出如下的降解机理:UV胶中的光引发剂在紫外光照射下会产生强的质子酸,产生的质子酸与MoO3发生反应,阻碍了空穴的有效传输,最终使得器件效率大幅度下降。此外,还开发出一种有效的OSCs器件用乙烯醋酸乙烯酯共聚物膜封装工艺。本研究指出了UV胶固化粘合剂封装工艺的问题,同时也为提高聚合物太阳能电池的稳定性提供了新策略。
Abstract:
In order to improve the lifetime of organic photovoltaic devices, encapsulation technology is often used to limit the exposure of solar cells to water and oxygen. Despite a series of advances in the encapsulation field of organic solar cells (OSCs), the damage caused by the encapsulation process has rarely been studied in the literature. In this paper, inverted OSCs with high stability were prepared by using classical poly(3-hexylthiophene) as the donor, [6,6]phenyl-C61-butyric acid methyl ester as the acceptor, piperazine that can improve stability of device as the third component, zinc oxide (ZnO) and molybdenum trioxide (MoO3) as the transport layer material. The effect of ultraviolet (UV) curing adhesive commonly used in large-scale roll-to-roll device encapsulating on the photoelectric conversion efficiency and stability is systematically investigated. The results are as follows: the performance (such as open-circuit voltage, short-circuit current density, fill factor, and power conversion efficiency) of UV glue-encapsulated devices shows a continuous decline with the prolongation of the irradiation time. Meanwhile, the performance of the aging devices is restored after replacing the MoO3/Al electrode, which confirms that the MoO3/Al interface corruption is an important reason for the performance attenuation of the device. Laser beam induced current imaging shows a center-to-edge failure process in UV glue-encapsulated device. Based on this, the following degradation mechanism is proposed: the photoinitiator in the UV glue will generate a strong protonic acid under UV light irradiation, and react with MoO3, which hinders the effective transmission of the hole, and ultimately reduces the device efficiency significantly. In addition, an effective ethylene-vinyl acetate copolymer encapsulation process for OSCs devices has also been developed. This study provides a new understanding of the UV glue encapsulation process, and also develops a new strategy for improving the stability of organic solar c

参考文献/References:

[1]WANG J Y,LIU K,MA L C,et al.Chemical Reviews[J],2016,116(23):14675-14725. [2]YE L,ZHANG S Q,HUO L J,et al.Accounts of Chemical Research[J],2014,47(5):1595-1603. [3]GUO F,LI N,FECHER F W,et al.Nature Communications[J],2015,6:7730. [4]ZHANG X,LI W P,YAO J N,et al.ACS Applied Materials & Interfaces[J],2016,8(24):15415-15421. [5]GRAETZEL M,JANSSEN R A J,MITZI D B,et al.Nature[J],2012,488(7411):304-312. [6]LI C,ZHOU J,SONG J,et al.Nature Energy[J],2021,6(6):605-613. [7]MENG H,LIAO C,DENG M,et al.Angewandte ChemieInternational Edition[J],2021,133(41):22728-22735. [8]CUI Y,XU Y,YAO H,et al.Advanced Materials[J],2021,33(41):2102420. [9]ZHENG Z,WANG J,BI P,et al.Joule[J],2022,6:171-184. [10]GROSSIORD N,KROON J M,ANDRIESSEN R,et al.Advanced Engineering Materials[J],2013,15(11):1068-1075. [11]刘彦甫,李世麟,荆亚楠,等.化学学报[J/OL].(2022-04-22)[2022-06-27].https://kns.cnki.net/kcms/detail/31.1320.O6.20220421.1632.002.html. LIU Y F,LI S L,JING Y N,et al.Acta Chimica Sinica[J/OL].(2022-04-22)[2022-06-27].https://kns.cnki.net/kcms/detail/31.1320.O6.20220421.1632002.html. [12]YU Z P,LIU Z X,CHEN F X,et al.Nature Communications[J],2019,10(1):1-9. [13]LIU Z X,YU Z P,SHEN Z,et al.Nature Communications[J],2021,12(1):1-10. [14]MING S,WU H,WANG X,et al.Journal of Materials Chemistry A[J],2020,8(43):22907-22917. [15]CHENG P,ZHAN X.Materials Horizons[J],2015,2(5):462-485. [16]YAN L,WANG Y,WEI J,et al.Journal of Materials Chemistry A[J],2019,7(12):7099-7108. [17]YIN Z,MEI S,GU P,et al.iScience[J],2021,24(9):103027. [18]AHMAD J,BAZAKA K,ANDERSON L J,et al.Renewable and Sustainable Energy Reviews[J],2013,27:104-117. [19]KIM N,POTSCAVAGE J W J,SUNDARAMOOTHI A,et al.Solar Energy Materials and Solar Cells[J],2012,101:140-146. [20]KOVROV A,HELGESEN M,BOEFFEL C,et al.Solar Energy Materials and Solar Cells[J],2020,204:110210. [21]PLANES E,JUILLARD S,MATHERON M,et al.Advanced Materials Interfaces[J],2020,7(15):2000293. [22]HSEL M,SNDERGAARD R R,JRGENSEN M,et al.Advanced Engineering Materials[J],2013,15(11):1068-1075. [23]PETERS C H,SACHSQUINTANA I T,KASTROP J P,et al.Advanced Energy Materials[J],2011,1(4):491-494. [24]KONG J,SONG S,YOO M,et al.Nature Communications[J],2014,5(1):1-8. \[25\]闫翎鹏,赵文盛,杨永珍,等.高分子学报\[J\],2021,52(4):350-362. YAN L P,ZHAO W S,YANG Y Z,et al.Acta Polymerica Sinica\[J\],2021,52(4):350-362. \[26\]HEUMUELLER T,MATEKER W R,DISTLER A,et al.Energy & Environmental Science\[J\],2016,9(1):247-256. \[27\]MATEKER W R,DOUGLAS J D,CABANETOS C,et al.Energy & Environmental Science\[J\],2013,6(8):2529-2537. \[28\]SACHSQUINTANA I T,HEUMLLER T,MATEKER W R,et al.Advanced Functional Materials\[J\],2014,24(25):3978-3985.

备注/Memo

备注/Memo:
收稿日期: 2022-06-28  修回日期: 2022-08-11 基金项目: 国家自然科学基金青年科学基金项目(61904121); 山西 省应用基础研究计划面上青年基金项目(201901D211282); 中北大学2019 年校科研基金项目(XJJ201925) 第一作者: 王亚玲, 女, 1990 年生, 博士, 讲师 通讯作者: 杨永珍, 女, 1969 年生, 教授, 博士生导师, Email: yyztyut@ 126. com 马昌期, 男, 1976 年生, 研究员, 博士生导师, Email: cqma2011@ sinano. ac. cn
更新日期/Last Update: 2023-05-10