[1]池方瀚,李雪健,施海龙,等.石墨烯增强镁基复合材料研究进展[J].中国材料进展,2023,42(12):929-941.[doi:10.7502/j.issn.1674-3962.202306003]
 CHI Fanghan,LI Xuejian,SHI Hailong,et al.A Review of Graphene Reinforced Magnesium Matrix Composites[J].MATERIALS CHINA,2023,42(12):929-941.[doi:10.7502/j.issn.1674-3962.202306003]
点击复制

石墨烯增强镁基复合材料研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第12期
页码:
929-941
栏目:
出版日期:
2023-12-31

文章信息/Info

Title:
A Review of Graphene Reinforced Magnesium Matrix Composites
文章编号:
1674-3962(2023)12-0929-13
作者:
池方瀚李雪健施海龙徐超王晓军
哈尔滨工业大学材料科学与工程学院,黑龙江 哈尔滨 150000
Author(s):
CHI Fanghan LI Xuejian SHI Hailong XU Chao WANG Xiaojun
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150000, China
关键词:
石墨烯镁基复合材料制备方法界面设计变形行为
Keywords:
graphene magnesium matrix composite preparation method interface design deformation behavior
分类号:
TB333.1+2
DOI:
10.7502/j.issn.1674-3962.202306003
文献标志码:
A
摘要:
石墨烯具有特殊的二维结构及优良的力学、热学和电学性能,被认为是金属基复合材料理想的增强相之一。石墨烯与镁合金的复合化,能够解决镁合金强度及弹性模量低、导热性差的问题,从而满足航空航天、军工、汽车等领域的性能需求。然而,由于石墨烯与镁的润湿性差、无界面反应,石墨烯在镁基体中的分散和界面结合情况是镁基复合材料制备的关键。此外,镁合金粉末的高化学活性也限制了粉末冶金方法的使用,难以采用其他复合材料的制备方法作为参考。因此,主要探讨了石墨烯镁基复合材料的制备技术、主要的界面设计方法及变形行为,总结了石墨烯镁基复合材料目前面临的主要问题,并对石墨烯镁基复合材料的发展趋势进行了展望。
Abstract:
Graphene has a special twodimensional structure, excellent mechanical,thermal and electrical properties. It was considered to be one of the ideal reinforcement for metal matrix composite. The composite of graphene and magnesium alloy could solve the problems of low strength, low elastic modulus and poor thermal conductivity of magnesium alloy, thereby meeting the property requirements of aerospace, military, automotive and other fields.However, due to the poor wettability and lack of interfacial reaction between graphene and magnesium, the dispersion and interfacial bonding of graphene in the magnesium matrix are the key to the preparation of magnesiumbased composites. The high chemical reactivity of magnesium alloy powder also limites the use of powder metallurgy methods, making it difficult to use other composite material preparation methods as a reference.Therefore, this article mainly explored the preparation technology,main interface design methods and deformation behavior of graphene reinforced magnesium matrix composites, summarized the main problems currently faced by graphene reinforced magnesium matrix composites, and prospected the development trend of graphene reinforced magnesium matrix composites.

参考文献/References:

\[1\]邸素梅.非金属矿\[J\], 2001(01): 5-6+39. DI S M. NonMetallic Mines\[J\], 2001(01): 5-6+39. \[2\]SHI H, XU C, HU X, et al. Journal of Magnesium and Alloys\[J\], 2022, 10(8): 2009-2024. \[3\]KAWAJIRI K, KOBAYASHI M, SAKAMOTO K. Journal of Cleaner Production\[J\], 2020, 253:119805. \[4\]CHEN J X, TAN L L, YU X M, et al. Journal of the Mechanical Behavior of Biomedical Materials\[J\], 2018, 87: 68-79. \[5\]蒲冬梅, 陈先华, 叶俊镠, 等. 稀有金属材料与工程\[J\], 2022, 51(12): 4436-4445. PU D M, CHEN X H, YE J L, et al. Rare Metal Materials and Engineering\[J\], 2022, 51(12): 4436-4445. \[6\]LIU W, WANG X, HU X, et al. Materials Science and Engineering: A\[J\], 2017, 683: 15-23. \[7\]WANG X, WANG X, HU X, et al. Journal of Magnesium and Alloys\[J\], 2020, 8(2): 421-430. \[8\]LEE C, WEI X, KYSAR J W, et al. Science\[J\], 2008, 321(5887): 385-388. \[9\]SAKHAEEPOUR A. Solid State Communications\[J\], 2009, 149(1): 91-95. \[10\]REINA A, JIA X, HO J, et al. Nano Letters\[J\], 2009, 9(1): 30-35. \[11\]YANG M, WENG L, ZHU H, et al. Carbon\[J\], 2017, 118: 250-260. \[12\]ZHANG X, LIU Y, LIU X, et al. Materials Science and Engineering: A\[J\], 2021, 828: 142118. \[13\]PILLARI L K, LESSOWAY K, BICHLER L. Journal of Magnesium and Alloys\[J\], 2023, 11(6): 1825-1905. \[14\]NIETO A, BISHT A, LAHIRI D, et al. International Materials Reviews\[J\], 2017, 62(5): 241-302. \[15\]RASHAD M, PAN F, ASIF M, et al. Journal of Industrial and Engineering Chemistry\[J\], 2014, 20(6): 4250-4255. \[16\]RASHAD M, PAN F S, HU H, et al. Materials Science and Engineering: A\[J\], 2015, 630: 36-44. \[17\]RASHAD M, PAN F S, ASIF M, et al. Materials Science and Technology\[J\], 2015, 31(12): 1452-1461. \[18\]RASHAD M, PAN F, TANG A, et al. Journal of Composite Materials\[J\], 2014, 49(3): 285-293. \[19\]PARSEGIAN V A.van der Waals Forces: a Handbook for Biologists, Chemists, Engineers, and Physicists\[M\]. Cambridge: Cambridge University Press, 2005. \[20\]ZHAO Z, ZHAO R, BAI P, et al. Journal of Alloys and Compounds\[J\], 2022, 902: 163484. \[21\]YUAN Q H, ZENG X S, LIU Y, et al. Carbon\[J\], 2016, 96: 843-855. \[22\]RASHAD M, PAN F, ZHANG J, et al. Journal of Alloys and Compounds\[J\], 2015, 646: 223-32. \[23\]ZHANG D, ZHAN Z. Journal of Alloys and Compounds\[J\], 2016, 658: 663-671. \[24\]LIU L, LI Y, ZHANG H, et al. Composites Part B: Engineering\[J\], 2021, 216:108851. \[25\]GANGULY S, CHAUBEY A K, SAHOO R, et al. Journal of Alloys and Compounds\[J\], 2023, 938: 168640. \[26\]XIAO H, MA G, YE J, et al. Vacuum\[J\], 2021, 191: 110281. \[27\]DU X, DU W, WANG Z, et al. Applied Surface Science\[J\], 2021, 536: 147791. \[28\]AJAY K P, MADHU H C, PARIYAR A, et al. Materials Science and Engineering: A\[J\], 2020, 769: 138517. \[29\]TORABI P M, EBRAHIMI G R, EZATPOUR H R. Materials Science and Engineering: A\[J\], 2019, 742: 373-389. \[30\]WANG M, ZHAO Y, WANG L D, et al. Carbon\[J\], 2018, 139: 954-963. \[31\]KANDEMIR S. Journal of Materials Engineering and Performance\[J\], 2018, 27(6): 3014-3023. \[32\]DU X, DU W, WANG Z, et al. Materials Science and Engineering: A\[J\], 2018, 711: 633-642. \[33\]TORABI P M, HABIBOLAHZADEH A, EBRAHIMI G R, et al. Materials Science and Engineering: A\[J\], 2017, 690: 313-322. \[34\]RASHAD M, PAN F, LIU Y, et al. Journal of Magnesium and Alloys\[J\], 2016, 4(4): 270-277. \[35\]CHEN L Y, PENG J Y, XU J Q, et al. Scripta Materialia\[J\], 2013, 69(8): 634-637. \[36\]ZENG X, ZHOU G, XU Q, et al. Materials Science and Engineering: A\[J\], 2010, 527(20): 5335-5340. \[37\]XIANG S L, GUPTA M, WANG X J, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2017, 100: 183-193. \[38\]RASHAD M, PAN F S, LIN D, et al. Materials & Design\[J\], 2016, 89: 1242-1250. \[39\]RASHAD M, PAN F S, ASIF M. Materials Science and Engineering: A\[J\], 2016, 649: 263-269. \[40\]LI M, GUO Q, CHEN L, et al. Journal of Materials Research and Technology\[J\], 2022, 21: 4138-4150. \[41\]FAN Y, YE L, TIAN Q, et al. Materials Science and Engineering: A\[J\], 2021, 801: 140417. \[42\]RASHAD M, PAN F S, TANG A, et al. Journal of Alloys and Compounds\[J\], 2014, 603: 111-118. \[43\]YUAN Q H, ZHOU G H, LIAO L, et al. Carbon\[J\], 2018, 127: 177-186. \[44\]LI X, SHI H, WANG X, et al. Materials Science and Engineering: A\[J\], 2022, 852: 143713. \[45\]LENG J F, WU G H, ZHOU Q B, et al. Scripta Materialia\[J\], 2008, 59(6): 619-622. \[46\]ALIPOUR M, KESHAVAMURTHY R, KOPPAD P G, et al. International Journal of Metalcasting\[J\], 2023,17:935-946. \[47\]VENKATESAN S, ANTHONY X M. Materials Research Express\[J\], 2019, 6(12): 126542. \[48\]LI C D, WANG X J, LIU W Q, et al. Materials & Design\[J\], 2014, 58: 204-208. \[49\]BROTCHIE A, GRIESER F, ASHOKKUMAR M. Physical Review Letters\[J\], 2009, 102(8): 084302. \[50\]CAO G, CHOI H, OPORTUS J, et al. Materials Science and Engineering: A\[J\], 2008, 494(1): 127-131. \[51\]NIE K B, WANG X J, WU K, et al. Journal of Alloys and Compounds\[J\], 2011, 509(35): 8664-8669. \[52\]MOHANTY P, MAHAPATRA R, PADHI P, et al. NanoStructures & NanoObjects\[J\], 2020, 23: 100475. \[53\]WANG Y, SHI J. Applied Physics A\[J\], 2019, 125(6): 449. \[54\]AKBARI M K, SHIRVANIMOGHADDAM K, HAI Z, et al. Materials Science and Engineering: A\[J\], 2017, 682: 98-106. \[55\]ROHATGI P K, AJAY K P, CHELLIAH N M, et al. JOM\[J\], 2020, 72(8): 2912-2926. \[56\]KAPTAY G, BRCZY P, SZIGETI F, et al. Journal of NonCrystalline Solids\[J\], 1996, 205-207: 742-747. \[57\]HYERS R W. Measurement Science and Technology\[J\], 2005, 16(2): 394. \[58\]KOLBE M, LIU X R, VOLKMANN T, et al. Materials Science and Engineering: A\[J\], 2004, 375-377: 524-527. \[59\]WILDE G, PEREPEZKO J H. Materials Science and Engineering: A\[J\], 2000, 283(1): 25-37. \[60\]PTSCHKE J, ROGGE V. Journal of Crystal Growth\[J\], 1989, 94(3): 726-738. \[61\]XU J Q, CHEN L Y, CHOI H, et al. Journal of Physics: Condensed Matter\[J\], 2012, 24(25): 255304. \[62\]FERGUSON J B, KAPTAY G, SCHULTZ B F, et al. Metallurgical and Materials Transactions A\[J\], 2014, 45(10): 4635-4645. \[63\]SHI R, MEIER J M, LUO A A. Metallurgical and Materials Transactions A\[J\], 2019, 50(8): 3736-3747. \[64\]SCHULTZ B F, FERGUSON J B, ROHATGI P K. Materials Science and Engineering: A\[J\], 2011, 530: 87-97. \[65\]MEGALINGAM A, AHMAD A H B, MAAROF M R B, et al. The International Journal of Advanced Manufacturing Technology\[J\], 2022, 119(3): 1435-1459. \[66\]HOSSEINI M, GHADER S. Journal of Molecular Liquids\[J\], 2010, 153(2): 139-145. \[67\]KUNNEN J. Rheologica Acta\[J\], 1984, 23(4): 424-434. \[68\]BICERANO J, DOUGLAS J F, BRUNE D A. Journal of Macromolecular Science, Part C\[J\], 1999, 39(4): 561-642. \[69\]DOUGLAS J, GARBOCZI E J A I C P. Advances in Chemical Physics\[J\],1995, 91: 85-153. \[70\]CHANG Z, SU N, WU Y, et al. Materials & Design\[J\], 2020, 195: 108990. \[71\]WANG P, SHEN J, CHEN T, et al. Journal of Magnesium and Alloys\[J\], 2022, 10(11): 3113-3132. \[72\]WANG L, CHEN T. Composites Part A: Applied Science and Manufacturing\[J\], 2022, 161: 107097. \[73\]CHEN L, ZHAO Y, HOU H, et al. Journal of Alloys and Compounds\[J\], 2019, 778: 359-374. \[74\]王晓军, 向抒林, 胡小石,等. 金属学报\[J\],2019, 55(1): 73-86. WANG X J, XIANG S L, HU X S, et al. Acta Metallurgica Sinica\[J\], 2019, 55(1): 73-86. \[75\]GUPTA M, WONG W L E. Materials Characterization\[J\], 2015, 105: 30-46. \[76\]RASHAD M, PAN F, TANG A, et al. Journal of Magnesium and Alloys\[J\], 2013, 1(3): 242-248. \[77\]CHU K, WANG J, LIU Y P, et al. Carbon\[J\], 2019, 143: 85-96. \[78\]WANG J, LI Z, FAN G, et al. Scripta Materialia\[J\], 2012, 66(8): 594-597. \[79\]XU Z, SHI X, ZHAI W, et al. Carbon\[J\], 2014, 67: 168-177. \[80\]MU X N, ZHANG H M, CAI H N, et al. Materials Science and Engineering: A\[J\], 2017, 687: 164-174. \[81\]YU Z, YANG W, ZHOU C, et al. Carbon\[J\], 2019, 141: 25-39. \[82\]ZHOU Y, DONG L, YANG Q, et al. Advanced Engineering Materials\[J\], 2021, 23(6):2001411. \[83\]CHI F, HOU J, CUI G, et al. Surfaces and Interfaces\[J\], 2023, 36: 102553. \[84\]RASHAD M, PAN F, TANG A, et al. Progress in Natural Science: Materials International\[J\], 2014, 24(2): 101-108. \[85\]LI Z, FAN G, GUO Q, et al. Carbon\[J\], 2015, 95: 419-427. \[86\]李建超. 粉末冶金GNPs/Al复合材料的组织调控与强化机理\[D\]. 哈尔滨:哈尔滨工业大学, 2021. LI J C. Microstructure Regulation and Strengthening Mechanism of Powder Metallurgy Fabricated GNPs/Al Composites\[D\]. Harbin: Harbin Institute of Technology, 2021. \[87\]MU X N, CAI H N, ZHANG H M, et al. Composites Part AApplied Science and Manufacturing\[J\], 2019, 123: 86-96. \[88\]MU X N, CAI H N, ZHANG H M, et al. Materials Science and Engineering: A\[J\], 2018, 725: 541-548. \[89\]VAROL T, CANAKCI A. Journal of Alloys and Compounds\[J\], 2015, 649: 1066-1074. \[90\]CHU K, WANG X H, WANG F, et al. Carbon\[J\], 2018, 127: 102-112. \[91\]李赞. 仿生构型石墨烯/铝基复合材料制备与性能研究\[D\]. 上海:上海交通大学, 2017. LI Z. Investigation on Fabrication and Mechanical Properties of Graphene/Al Composites with a Biomimetic Microstructure\[D\]. Shanghai: Shanghai Jiao Tong University, 2017. \[92\]LIU L, LI Y, ZHANG H, et al. Materials Characterization\[J\], 2021, 181: 111447. \[93\]LIU Z Y, WANG L H, ZAN Y N, et al. Composites Part B: Engineering\[J\], 2020, 199: 108268. \[94\]ZHANG X, XU Y, WANG M, et al. Nature Communications\[J\], 2020, 11(1): 2775. \[95\]VOZNIAKOVSKII A, VOZNYAKOVSKII A, KIDALOV S, et al. Journal of Structural Chemistry\[J\],2020, 61: 826-834. \[96\]LI X, WANG X, HU X, et al. Journal of Magnesium and Alloys\[J\], 2021,11(4):1206-1212. \[97\]KWON H, MONDAL J, ALOGAB K A, et al. Journal of Alloys and Compounds\[J\], 2017, 698: 807-813. \[98\]SHIN S E, CHOI H J, SHIN J H, et al. Carbon\[J\], 2015, 82: 143-151. \[99\]DU J, YANG J, KUWABARA M, et al. Journal of Alloys and Compounds\[J\], 2009, 470(1): 134-140. \[100\]LI C, YANG S, DU J, et al. Journal of Magnesium and Alloys\[J\], 2020, 8(4): 1090-1101. \[101\]HU X, SUN Z, ZHANG C, et al. Journal of Magnesium and Alloys\[J\], 2018, 6(2): 164-170. \[102\]LI Z, FU X, GUO Q, et al. International Journal of Plasticity\[J\], 2018, 111: 253-265. \[103\]LIU J, JIANG W, LIU J, et al. Electrochimica Acta\[J\], 2021, 367:137514. \[104\]KONDOH K, FUKUDA H, UMEDA J, et al. Materials Science and Engineering: A\[J\], 2010, 527(16): 4103-4108. \[105\]WANG W C, LIU J L, ZHAO H H, et al. Transactions of Nonferrous Metals Society of China\[J\], 2022, 32(2): 472-482. \[106\]DU X M, ZHENG K F, CHEN R Q, et al. Digest Journal of Nanomaterials and Biostructures\[J\], 2017, 12(2): 463-471. \[107\]LERF A, HE H, FORSTER M, et al. The Journal of Physical Chemistry B\[J\], 1998, 102(23): 4477-4482. \[108\]LI X J, SHI H L, WANG X J, et al. Carbon\[J\], 2022, 186: 632-643. \[109\]DONG Y, ZHANG S, DU X, et al. Advanced Functional Materials\[J\],2019, 29(24): 1901127. \[110\]WEI S, SHI H, LI X, et al. Journal of Alloys and Compounds\[J\], 2022, 902: 163700. \[111\]XU Z, BUEHLER M J. Journal of Physics Condensed Matter\[J\], 2010, 22(48):485301. \[112\]WANG Y, LI J, GUAN B, et al. Materials Science and Engineering: A\[J\], 2022, 856: 144017. \[113\]HUMPHREYS F J, HATHERLY M. Chapter 9Recrystallization of TwoPhase Alloys\[M\]//HUMPHREYS F J, HATHERLY M. Recrystallization and Related Annealing Phenomena (Second Edition). Oxford: Elsevier, 2004: 285-319. \[114\]GHAZANLOU S I, EGHBALI B, PETROV R. Materials Chemistry and Physics\[J\], 2021, 257: 123766. \[115\]WU G, YU Z, JIANG L, et al. Carbon\[J\], 2019, 152: 932-945. \[116\]SHAO P, CHEN G, JU B, et al. Carbon\[J\], 2020, 162: 455-464. \[117\]CHEN L Y, KONISHI H, FEHRENBACHER A, et al. Scripta Materialia\[J\], 2012, 67(1): 29-32.

备注/Memo

备注/Memo:
收稿日期:2023-06-04修回日期:2023-06-28 基金项目:国家自然科学基金资助项目(51971078) 第一作者:池方瀚,男,1998年生,博士研究生 通讯作者:王晓军,男,1981年生,教授,博士生导师, Email: xjwang@hit.edu.cn
更新日期/Last Update: 2023-11-28