[1]董龙龙,王圆梦,崔文芳,等.纳米碳强化钛基复合材料界面结构与性能优化研究进展[J].中国材料进展,2023,42(12):942-958.[doi:10.7502/j.issn.1674-3962.202305019]
 DONG Longlong,WANG Yuanmeng,CUI Wenfang,et al.Research Progress on Interface Structure and Performance Optimization of Carbonaceous Nanomaterial Reinforced Titanium Matrix Composites[J].MATERIALS CHINA,2023,42(12):942-958.[doi:10.7502/j.issn.1674-3962.202305019]
点击复制

纳米碳强化钛基复合材料界面结构与性能优化研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第12期
页码:
942-958
栏目:
出版日期:
2023-12-31

文章信息/Info

Title:
Research Progress on Interface Structure and Performance Optimization of Carbonaceous Nanomaterial Reinforced Titanium Matrix Composites
文章编号:
1674-3962(2023)12-0942-17
作者:
董龙龙12王圆梦3崔文芳1孙国栋4徐俊杰4李明佳4周廉12张于胜12
1.东北大学材料科学与工程学院,辽宁 沈阳 110819 2.西北有色金属研究院,陕西 西安 710016 3.西安科技大学材料科学与工程学院,陕西 西安 710054 4.西安稀有金属材料研究院有限公司,陕西 西安 710016
Author(s):
DONG Longlong12 WANG Yuanmeng3 CUI Wenfang1 SUN Guodong4XU Junjie4 LI Mingjia4 ZHOU Lian12 ZHANG Yusheng12
1. School of Materials Science and Engineering, Northeastern University,Shenyang 110819, China 2. Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China 3. College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi‘an 710054, China 4. Xi’an Rare Metal Materials Institute Co., Ltd.,Xi’an 710016, China
关键词:
钛基复合材料纳米碳材料制备方法界面调控强化机制
Keywords:
titanium matrix composites nanocarbon material preparation processinterface structure regulation strengthening mechanism
分类号:
TG146.2+3
DOI:
10.7502/j.issn.1674-3962.202305019
文献标志码:
A
摘要:
钛及钛合金材料因其密度低、比强度高、耐腐蚀性能好等优异特性,在航空航天、汽车和军事等领域具有广阔的应用前景。近10年来,以石墨烯为代表的碳纳米材料由于具有超高的力学特性和独特的二维结构,广泛用作钛或钛合金基体的增强体。然而,纳米碳源的团聚现象以及严重的界面反应使纳米碳强化钛基复合材料的力学性能提升有限。随着对纳米碳强化钛基复合材料制备方法和工艺的深入探索,在其界面组织性能关系和强化机制等方面取得了一系列研究进展。在纳米碳强化钛基复合材料的制备过程中,必须从各个方面(如工艺特点、适用范围和应用要求等)衡量,选择合适的制备工艺,并通过界面结构设计优化来进一步改善基体组织,提高钛基复合材料力学性能。因此,系统性介绍近年来纳米碳强化钛基复合材料的制备工艺和纳米碳材料的表面改性及其应用,并对纳米碳强化钛基复合材料的界面结构调控和强化机制进行分析讨论,指出现阶段其制备、性能优化等方面存在的问题,并对其未来发展趋势进行展望。以期对以后纳米碳强化钛基复合材料的发展和应用提供一定的指导和借鉴。
Abstract:
Titanium and titanium alloy materials have broad application prospects in aerospace, automotive and military fields due to their low density, high specific strength, good corrosion resistance etc. In the past decade, carbon nanomaterials (such as graphene) have been widely used as a kind of reinforcement for titanium or titanium alloy matrix owing to their ultra-high mechanical properties and unique two-dimensional structure. However, the agglomeration of nano-carbon sources and severe interfacial reactions often lead to the trade-off of strength and ductility of titanium matrix composites (TMCs). With the in-depth study of the preparation technology and process of Ti matrix composites reinforced with carbon nanomaterials, a series of research progress has been adopted in the interface-microstructure-performance relationship and strengthening mechanism of carbon nanomaterials reinforced TMCs. In the fabrication process of TMCs, it is necessary to select the appropriate preparation process from various aspects (including process characteristics, application scope and application requirements etc.), and further optimize the microstructure of TMCs and improve the mechanical properties of TMCs through the optimization design of interfacial structure. Therefore, this work systematically introduces the preparation process, surface modification and application of carbon nanomaterials reinforced TMCs in recent years, and discusses the interface structure regulation and strengthening mechanism of carbon nanomaterials reinforced TMCs. Finally, the existing problems are pointed out and the future development trend of carbonaceous nanomaterial reinforced carbon nanomaterials reinforced TMCs is prospected. It provides some guidance and reference for the development and application of carbonaceous nanomaterial/Ti composites in the future.

参考文献/References:

\[1\]刘世锋, 宋玺, 薛彤, 等. 航空材料学报\[J\], 2020, 36: 77-94. LIU S F, SONG X, XUE T, et al. Journal of Aeronautical Materials\[J\], 2020, 36: 77-94. \[2\]WEI S L, HUANG L J, LI X T, et al. Journal of Alloys and Compounds\[J\], 2018, 752: 164-178. \[3\]ZHANG J L, SONG B, CAI C, et al. Advanced Powder Materials\[J\], 2022, 1(2): 100010. \[4\]TJONG S C, MAI Y W. Composites Science and Technology\[J\], 2008, 68(3/4): 583-601. \[5\]黄陆军, 耿林, 彭华新. 中国材料进展\[J\], 2019, 38(3): 214-250. HUANG L J, GENG L, PENG H X. Materials China\[J\], 2019, 38(3): 214-250. \[6\]耿林, 梁淑华, 郑开宏, 等. 金属基复合材料\[M\]. 北京: 中国铁道出版社, 2020: 121-125. GENG L, LIANG S H, ZHENG K H, et al. Metal Matrix Composites\[M\], Beijing: China Railway Publishing House, 2020: 121-125. \[7\]MUNIR K S, LI Y C, LIN J X, et al. Materialia\[J\], 2018, 3: 122-138. \[8\]SU Y S, LI Z, YU Y, et al. Science China Materials\[J\], 2018, 61(1): 112-124. \[9\]CHU K, WANG F, LI Y B, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2018, 109: 267-279. \[10\]KONDOH K, THRERUJIRAPAPONG T, IMAI H, et al. Composites Science and Technology\[J\], 2009, 69(7/8): 1077-1081. \[11\]QIU C H, SU Y S, YANG J Y, et al. Composites Part C: Open Access\[J\], 2021, 4: 100120. \[12\]SONG Y, CHNE Y, LIU W W, et al. Materials & Design\[J\], 2016, 109: 256-263. \[13\]HU Z R, TONG G Q, NIAN Q, et al. Composites Part B: Engineering\[J\], 2016, 93: 352-359. \[14\]MUNIR K S, WEN C, LI Y C. Advanced Biosystems\[J\], 2019, 3(3): 1800212. \[15\]LAVISH K S, ALOK B, AKASH O, et al. Diamond & Related Materials\[J\], 2019, 91: 144-155. \[16\]CAO Z, WANG X D, LI J L, et al. Journal of Alloys and Compounds\[J\], 2017, 696: 498-502. \[17\]TANG C Y, WONG C T, ZHANG L N, et al. Journal of Alloys and Compounds\[J\], 2013, 557: 67-72. \[18\]TANG M K, ZHANG L C, ZHANG N. Materials Science and Engineering: A\[J\], 2021, 814: 141187. \[19\]LIU K Y, LI J S, WAN J, et al. Carbon\[J\], 2022, 197: 412-424. \[20\]TIAN N, DONG L L, WANG H L, et al. Journal of Alloys and Compounds\[J\], 2021, 867: 159093. \[21\]DONG L L, XIAO B, LIU Y, et al. Ceramics International\[J\], 2018, 44: 17835-17844. \[22\]ZHOU Y, DONG L L, WANG Q H, et al. Advanced Engineering Materials\[J\], 2021, 23: 2001411. \[23\]DONG L L, LU J W, FU Y Q, et al. Carbon\[J\], 2020, 164: 272-286. \[24\]YANG Y J, LIU M B, ZHOU S Q, et al. Journal of Alloys and Compounds\[J\], 2021, 871: 159535. \[25\]MU X N, CAI H N, ZHANG H M, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2019, 123: 86-96. \[26\]LIU L, ZHANG H M, CHENG X W, et al. Ceramics International\[J\], 2022, 48: 37470-37475. \[27\]ZHANG W, ZHOU S Q, REN W J, et al. Journal of Alloys and Compounds\[J\], 2021, 888: 161527. \[28\]YIN H B, LI P. International Journal of Fatigue\[J\], 2023, 167: 107352. \[29\]XIONG Y F, ZHANG F M, DAI T, et al. Materials Characterization\[J\], 2022, 194: 112455. \[30\]LIN K J, FANG Y M, GU D D, et al. Advanced Powder Technology\[J\], 2021, 32: 1426-1437. \[31\]YAN Q, CHEN B, LI J S. Carbon\[J\], 2021, 174: 451-462. \[32\]LIU Y, LI S F, MISRA R D K, et al. Scripta Materialia\[J\], 2020, 183: 6-11. \[33\]ATTAR H, HAGHIGHI S E, KENT D, et al. International Journal of Machine Tools and Manufacture\[J\], 2018, 133: 85-102. \[34\]覃信茂, 谢卓成, 谢泉. 电子元件与材料\[J\], 2014, 33(3): 1-4. QIN X M , XIE Z C , XIE O. Electronic Components and Materials\[J\], 2014, 33(3): 1-4. \[35\]YANG H, SHAN C, LI F, et al. Chemical Communications\[J\], 2009, 14(26): 3880-3882. \[36\]唐秀之. 氧化石墨烯表面功能化修饰\[D\]. 北京:北京化工大学, 2012. TANG X Z. Surface Functionalization Modification of Graphene Oxide\[D\]. Beijing: Beijing University of Chemical Technology, 2012. \[37\]董龙龙, 李响, 常国, 等.通过含氧石墨烯改性分散提高钛基复合材料性能的方法: CN115074566B\[P\]. 2023-04-08. DONG L L, LI X, CHANG G, et al. The Method of Improving the Properties of Titanium Matrix Composites by Modified Dispersion of OxygenContaining Graphene: CN115074566B\[P\]. 2023-04-08. \[38\]薛航.石墨烯改性分散及钛基复合材料制备与性能研究\[D\]. 西安: 西安科技大学, 2022. XUE H. Preparation and Properties of Graphene Modified Dispersion and Titanium Matrix Composites\[D\], Xian: Xian University of Science and Technology, 2022. \[39\]YANG L Z, HAN T L, ZHANG X, et al. Materials Research Letters\[J\], 2022, 10(9): 567-574. \[40\]PU B W, SHA J W, LUN E Z, et al. Materials Science and Engineering: A\[J\], 2019, 742: 201-210. \[41\]XUE Y L, CHEN W G, WANG J J, et al. Materials\[J\], 2018, 11(11): 2071. \[42\]GE Y X, ZHANG H M, CHENG X W, et al. Journal of Alloys and Compounds\[J\], 2022, 893: 162240. \[43\]SI X, LI M, CHEN F, et al. Materials Science and Engineering: A\[J\], 2017, 708: 311-318. \[44\]ZHANG X, LI S F, PAN D, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2018, 105: 87-96. \[45\]VELMURUGAN V, MOHAN B. Materials Research Express\[J\], 2023, 10: 036504. \[46\]SHUAI C, WANG B, BIN S, et al. Materials & Design\[J\], 2020, 191: 108612. \[47\]ZHANG W L, CHOI H J, LEONG Y K. Materials Chemistry and Physics\[J\], 2014, 145(1/2): 151-155. \[48\]FAN Y, JIANG W, KAWASAKI A. Advanced Functional Materials\[J\], 2012, 22(18): 3882-3889. \[49\]XUE H, ZHU M, DONG L L, et al. Journal of Alloys and Compounds\[J\], 2022, 905: 164198. \[50\]CHEN B, SHEN J H, YE W T, et al. Carbon\[J\], 2017, 114: 198-208. \[51\]MU X N, CAI H N, ZHANG H M, et al. Materials & Design\[J\], 2018, 140: 431-441. \[52\]MU X N, CAI H N, ZHANG H M, et al. Materials Science and Engineering: A\[J\], 2018. 725: 541-548. \[53\]SHANG C Y, ZHANG F M, WANG J, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2022, 158: 106981. \[54\]张冬冬.内生TiCx颗粒形貌、尺寸控制及其对Cu基复合材料组织和性能的影响\[D\]. 长春: 吉林大学, 2018. ZHANG D D. Morphology Modification of insitu TiCx Particles and the Effects on Microstructure and Mechanical Properties of Cu Matrix Composite\[D\]. Changchun: Jilin University, 2018. \[55\]于敬宇, 李玉龙, 周宏霞, 等. 复合材料学报\[J\], 2005, 22(5): 31-38. YU J Y, LI Y L, ZHOU H X, et al. Journal of Composite Materials\[J\], 2005, 22(5): 31-38. \[56\]傅铸杰. 纳米金刚石原位自生制备TiC/Ti复合材料及其性能研究\[D\]. 北京: 北京理工大学, 2016. FU Z J. Microstructure and Mechanical Properties of insitu TiC Reinforced Titanium Matrix Composites Prepared by Spark Plasma Sintering of TiNanodiamond System\[D\]. Beijing: Beijing Institute of Technology, 2016. \[57\]HUANG L J, GENG L, LI A B, et al. Scripta Materialia\[J\], 2009, 60(11): 996-999. \[58\]WONG J C, PARAMSONTHY M, GUPTA M, et al. Composites Science and Technology\[J\], 2009, 69(3/4): 438-444. \[59\]ZHANG X, WU K, NI Y, et al. Nature Communications\[J\], 2022, 13: 7719. \[60\]LIU L, LI Y K, ZHANG H M, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2022, 156: 106892. \[61\]WANG H, ZHANG H M, CHENG X W, et al. Materials Science and Engineering: A\[J\], 2022, 854: 143536. \[62\]欧阳文博, 任利娜, 黄先明, 等. 钛工业进展\[J\], 2022, 39(4): 25-29. OUYANG W B, REN L N, HUANG X M, et al. Titanium Industry Progress\[J\], 2022, 39(4): 25-29. \[63\]GUAN R, WANG Y, ZHENG S, et al. Materials Science and Engineering: A\[J\], 2019, 754: 437-446. \[64\]GE Y X, ZHANG H M, CHEN X W, et al. Journal of Alloys and Compounds\[J\], 2021, 893: 162240. \[65\]MU X N, CAI H N, ZHANG H M, et al. Carbon\[J\], 2018, 137: 146-155. \[66\]DONG L L, ZHANG W, FU Y Q, et al. Carbon\[J\], 2021, 184: 583-595. \[67\]DONG L L, ZHANG W, FU Y Q, et al. ACS Applied Materials & Interfaces\[J\], 2021, 13: 43197-43208. \[68\]YAN Q, CHEN B, YE W T, et al. ACS Applied Materials & Interfaces\[J\], 2022, 14: 27118-27129. \[69\]MU X N, ZHANG H M, CAI H N, et al. Materials Science and Engineering: A\[J\], 2017,687: 164-174. \[70\]ZHANG F M, WANG J, LIU T F, et al. Materials & Design\[J\], 2020, 186: 108330. \[71\]YAN Q, CHEN B, CAO L, et al. Journal of Materials Science & Technology\[J\], 2022, 96: 85-93. \[72\]REN W J, LIU M B, ZHANG W, et al. Journal of Alloys and Compounds\[J\], 2022, 897: 163210. \[73\]WANG Y M, ZHU M, DONG L L, et al. Journal of Alloys and Compounds\[J\], 2023, 947: 169557. \[74\]徐嘉. 碳/TC11基复合材料的组织与力学性能研究\[D\]. 西安: 西安石油大学, 2022. XU J. Microstructure and Mechanical Properties of Carbon/TC11 Matrix Composites\[D\]. Xian: Xian Shiyou University, 2022. \[75\]SHI W D, YAN Q, SHEN J H, et al. Materials Science and Engineering: A\[J\], 2022, 852: 143723. \[76\]LU J W, DONG L L, LIU Y, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2020, 136: 105971. \[77\]SHI W D, LU S Y, SHEN J H, et al. Materials Science and Engineering: A\[J\], 2022, 830: 142321. \[78\]LABUSCH R. Physica Status Solidi(B)\[J\], 1970, 41: 659-669. \[79\]XIONG N, BAO R, YI J H, et al. Journal of Alloys and Compounds\[J\], 2019, 770: 204-213. \[80\]DONG L L, XIAO B, JIN L H, et al. Ceramics International\[J\], 2019, 45: 19370-19379. \[81\]DONG L L, FU Y Q, LIU Y, et al. Carbon\[J\], 2021, 173: 41-53. \[82\]ZHANG Z, CHEN D. Scripta Materialia\[J\], 2006, 54: 1321-1326. \[83\]NARDONE V C, PREWO K M. Scripta Materialia\[J\], 1986, 20(1): 43-48. \[84\]WANG M, ZHAO Y, WANG L D, et al. Carbon\[J\], 2018, 139: 954-963. \[85\]HUANG S R, WU H, ZHU H G, et al. Intermetallics\[J\], 2022, 148: 107639. \[86\]SHI W D, YAN Q, SHEN J H, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2022, 160: 107055. \[87\]CHU K, WANG F, LI Y B, et al. Carbon\[J\], 2018, 133: 127-139. \[88\]ARSENAULT R J, SHI N. MaterIals Science and Engineering\[J\], 1989, 81: 175-187.

备注/Memo

备注/Memo:
收稿日期:2023-05-23修回日期:2023-08-01 基金项目:国家自然科学基金资助项目(52271138);陕西省重点 研发计划一般项目(2023-YBGY-433) 第一作者:董龙龙,男,1990年生,高级工程师 通讯作者:张于胜,男,1979年生,教授,博士生导师, Email:y.sh.zhang@c.nin.com
更新日期/Last Update: 2023-11-28