[1]蒋宇乾,张翔,赵乃勤,等.石墨烯增强铜基复合材料的界面调控及其性能研究进展[J].中国材料进展,2023,42(12):959-973.[doi:10.7502/j.issn.1674-3962.202308013]
 JIANG Yuqian,ZHANG Xiang,ZHAO Naiqin,et al.Research Progress on Interfacial Regulation and Properties of Graphene Reinforced Copper Matrix Composites[J].MATERIALS CHINA,2023,42(12):959-973.[doi:10.7502/j.issn.1674-3962.202308013]
点击复制

石墨烯增强铜基复合材料的界面调控及其性能研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第12期
页码:
959-973
栏目:
出版日期:
2023-12-31

文章信息/Info

Title:
Research Progress on Interfacial Regulation and Properties of Graphene Reinforced Copper Matrix Composites
文章编号:
1674-3962(2023)12-0959-15
作者:
蒋宇乾张翔赵乃勤何春年
天津大学材料科学与工程学院,天津 300350
Author(s):
JIANG Yuqian ZHANG Xiang ZHAO Naiqin HE Chunnian
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
关键词:
石墨烯铜基复合材料界面调控界面作用机理强化机制
Keywords:
graphene copper matrix composites interface regulation mechanism of interface strengthening mechanism
分类号:
TB333.1+2
DOI:
10.7502/j.issn.1674-3962.202308013
文献标志码:
A
摘要:
铜基复合材料有望全面提升铜及铜合金的力学性能和导电、导热等功能特性。石墨烯具有优异的力学和物理性能,是铜基复合材料的理想增强相。石墨烯/铜界面的性质决定了复合材料性能,进行界面调控以提高石墨烯/铜的界面结合性已成为研究人员关注的热点问题。总结了近几年开发的石墨烯缺陷设计法、碳碳杂化增强相法、金属和陶瓷纳米颗粒修饰石墨烯法以及原位生长石墨烯和石墨烯复合增强相法等多种界面调控策略,讨论了多种界面调控策略对石墨烯增强铜基复合材料的力学、导电、导热性能的作用机理,展望了应用界面调控策略研发的高性能复合材料的应用前景和未来研发的发展方向。
Abstract:
The development of copper matrix composites promises to comprehensively enhance the mechanical properties and functional characteristics, such as electrical and thermal conductivity, of copper and copper alloys. Graphene possesses excellent mechanical and physical properties and is regarded as an ideal reinforcement material for copper matrix composites. The interface properties between graphene and copper determines the overall performance of the composites. Enhancing the interfacial adhesion of graphene/copper through interface regulation has become a research hotspot currently. This review summarizes various regulation strategies for the graphene/copper interface in recent years, including graphene defect designing, carbon-carbon hybrid reinforcements, metal and ceramic nanoparticle-modified graphene,and in-situ grown graphene and graphene complex reinforcements. It systematically discusses the mechanisms by which interface regulation influences the mechanical properties, electrical conductivity and thermal conductivity of the composites. Moreover, the application prospects of highperformance composites developed by interface regulation strategies and future research directions are also provided.

参考文献/References:

\[1\]STANKOVICH S, DIKIN D, DOMMETT G, et al. Nature\[J\], 2006,442:282-286. \[2\]RAMAMURTY U. Composites Science & Technology\[J\], 2005,65(11/12):1815-1825. \[3\]CHU K, WANG J, LIU Y, et al. Carbon\[J\], 2018,140:112-123. \[4\]YANG M, WENG L, ZHU H, et al. Scripta Materialia\[J\], 2017,138:17-21. \[5\]LUO H, SUI Y, QI J, et al. Journal of Alloys and Compounds\[J\], 2017,729:293-302. \[6\]XU Z, ZHANG X, ZHAO N, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2020,133:105891. \[7\]ZHANG X, XU Y, WANG M, et al. Nature Communications\[J\], 2020,11(1):2775. \[8\]GUO S, ZHANG X, SHI C, et al. Carbon\[J\], 2022,188:81-94. \[9\]JIANG R, ZHOU X, FANG Q, et al. Materials Science and Engineering: A\[J\], 2016,654:124-130. \[10\]ZHAO L, LEE T, RYU S, et al. Nano Letters\[J\], 2021,21(13):5706-5713. \[11\]YU J, WANG L, LIU Z, et al. Journal of Alloys and Compounds\[J\], 2022,924:166610. \[12\]KUNKA C, BAVDEKAR S, RUDAWSKI N G, et al. Journal of PhysicsMaterials\[J\], 2019,2(2):25005. \[13\]HWANG J, YOON T, JIN S H, et al. Advanced Materials\[J\], 2013,25(46):6724-6729. \[14\]PONRAJ N V, AZHAGURAJAN A, VETTIVEL S C, et al. Surfaces and Interfaces\[J\], 2017,6:190-196. \[15\]YANG Z, WANG L, SHI Z, et al. Carbon\[J\], 2018,127:329-339. \[16\]DONG Z, ZHAO S, ZHANG Y, et al. Materials Science and Engineering: A\[J\], 2022,848:143391. \[17\]LEE X J, HIEW B Y Z, LAI K C, et al. Journal of the Taiwan Institute of Chemical Engineers\[J\], 2019,98:163-180. \[18\]SINGH K, KHANNA V, CHAUDHARY V. ESC Journal of Solid State Science and Technology\[J\], 2022,11(9):97001. \[19\]LUO F, JIANG X, SUN H, et al. Vacuum\[J\], 2023,207:111610. \[20\]ZHANG X, YANG W, ZHANG J, et al. Materials Science and Engineering: A\[J\], 2019,743:512-519. \[21\]GLER , KATMER H. The European Physical Journal Plus\[J\], 2020,135(3):308. \[22\]ZHANG X, SHI C, LIU E, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2017,103:178-187. \[23\]CHEN X, TAO J, LIU Y, et al. Carbon\[J\], 2019,146:736-755. \[24\]ZHANG H, LIU Y, TAO J, et al. Materials Science and Engineering: A\[J\], 2021,825:141861. \[25\]ABDELWAHED M S, MESELHY A F. Ceramics International\[J\], 2020,46(7):9198-9206. \[26\]TANG Y, YANG X, WANG R, et al. Materials Science and Engineering: A\[J\], 2014,599:247-254. \[27\]ZHANG X, SHI C, LIU E, et al. Nanoscale\[J\], 2017,9(33):11929-11938. \[28\]HAN T, LI J, ZHAO N, et al. Acta Metallurgica Sinica (English Letters)\[J\], 2020,33(5):643-648. \[29\]ZHAO X, TANG J, YU F, et al. Journal of Alloys and Compounds\[J\], 2018,766:266-273. \[30\]LI M, CHE H, LIU X, et al. Journal of Materials Science\[J\], 2014,49(10):3725-3731. \[31\]ZHAO C, WANG J. Physica Status Solidi (A)\[J\], 2014,211(12):2878-2885. \[32\]高昌琦, 安亮, 马勤. 稀有金属材料与工程\[J\], 2022,51(11):3949-3955. GAO C Q, AN L, MA Q. Rare Metal Materials and Engineering \[J\], 2022,51(11):3949-3955. \[33\]JIANG Y, TAN Z, FAN G, et al. Carbon\[J\], 2020,161:17-24. \[34\]CHU K, WANG F, LI Y, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2018,109:267-279. \[35\]QIAN S Y, XU Z H, XIE H N, et al. Applied Surface Science\[J\], 2020,533:147489. \[36\]CHEN F, MEI Q S, LI J Y, et al. Materials Science and Engineering: A\[J\], 2022,839:142859. \[37\]GUO S, ZHANG X, SHI C, et al. Materials Science and Engineering: A\[J\], 2019,766:138365. \[38\]DONG L L, FU Y Q, LIU Y, et al. Carbon\[J\], 2021,173:41-53. \[39\]CHU K, WANG F, LI Y, et al. Carbon\[J\], 2018,133:127-139. \[40\]CHU K, WANG F, WANG X, et al. Materials & Design\[J\], 2018,144:290-303. \[41\]LI X, CAI W, AN J, et al. Science\[J\], 2009,324(5932):1312-1314. \[42\]GAO L, GUEST J R, GUISINGER N P. Nano Letters\[J\], 2010,10(9):3512-3516. \[43\]SHU S, YUAN Q, DAI W, et al. Materials & Design\[J\], 2021,203:109586. \[44\]LI T, WANG Y, YANG M, et al. Materials Science and Engineering: A\[J\], 2021,826:141983. \[45\]WANG S, HAN S, XIN G, et al. Materials & Design\[J\], 2018,139:181-187. \[46\]NASIBULIN A G, KOLTSOVA T, NASIBULINA L I, et al. Acta Materialia\[J\], 2013,61(6):1862-1871. \[47\]周海涛, 熊希雅, 罗飞, 等. 物理学报\[J\], 2021,70(8):315-321. ZHOU H T, XIONG X Y, LUO F, et al. Acta Physica Sinica\[J\], 2021,70(8):315-321. \[48\]CHEN Y, ZHANG X, LIU E, et al. Scientific Reports\[J\], 2016,6(1):19363. \[49\]CAO M, XIONG D, TAN Z, et al. Carbon\[J\], 2017,117:65-74. \[50\]CHEN Q, ZHONG Y, HUANG M, et al. 2D Materials\[J\], 2018,5(3):35001. \[51\]SUN Z, YAN Z, YAO J, et al. Nature\[J\], 2010,468(7323):549-552. \[52\]RUAN G, SUN Z, PENG Z, et al. ACS Nano\[J\], 2011,5(9):7601-7607. \[53\]CHEN Y, ZHANG X, LIU E, et al. Journal of Alloys and Compounds\[J\], 2016,688:69-76. \[54\]GUO S, ZHANG X, SHI C, et al. Powder Technology\[J\], 2020,362:126-134. \[55\]YANG T, CHEN W, ZHANG H, et al. Materials Science and Engineering: A\[J\], 2022,835:142662. \[56\]GAO Z, ZUO T, WANG M, et al. Carbon\[J\], 2022,186:303-312. \[57\]YANG Z Y, WANG L D, CUI Y, et al. Nanoscale\[J\], 2018,10(36):16990-16995. \[58\]WANG M, WANG L, SHENG J, et al. Journal of Alloys and Compounds\[J\], 2019,798:403-413. \[59\]FAN L, YAO W, WANG Y. Diamond and Related Materials\[J\], 2021,118:108519. \[60\]KAWK S, RING T A, CHOI B. Journal of Industrial and Engineering Chemistry\[J\], 2019,70:484-488. \[61\]LI J, CHEN X, LI W, et al. Journal of Materials Engineering and Performance\[J\], 2019,28(7):4265-4274. \[62\]QIAO Z, ZHOU T, KANG J, et al. Materials Letters\[J\], 2018,224:37-41. \[63\]ZHAO S, ZHANG Y, YANG J, et al. Carbon\[J\], 2020,168:135-143. \[64\]ZUO T, WANG M, XUE J, et al. Materials Characterization\[J\], 2023,200:112863. \[65\]WANG M, ZUO T, XUE J, et al. Materials Letters\[J\], 2022,319:132219. \[66\]ZUO T, WANG M, XUE J, et al. Carbon\[J\], 2022,197:455-465. \[67\]SHIN S E, CHOI H J, SHIN J H, et al. Carbon\[J\], 2015,82:143-151. \[68\]XIANG Y, WANG X, HU X, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2019,119:225-234. \[69\]LI Z, FU X, GUO Q, et al. International Journal of Plasticity\[J\], 2018,111:253-265. \[70\]ZHANG X, SHI C, LIU E, et al. ACS Applied Materials & Interfaces\[J\], 2018,10(43):37586-37601. \[71\]SHI R, XIE H, ZHANG X, et al. Applied Surface Science\[J\], 2022,571:151314. \[72\]SHI R, QIAN S, ZHAO D, et al. Physica E: LowDimensional Systems and Nanostructures\[J\], 2022,142:115260. \[73\]XIAN Y, ZOU Z, TU C, et al. Materials Letters\[J\], 2020,273:127969. \[74\]KAVEH M, WISER N. Journal of Physics F: Metal Physics\[J\], 1986,16(6):795-802. \[75\]CAO M, XIONG D B, YANG L, et al. Advanced Functional Materials\[J\], 2019,29(17):1806792. \[76\]YANG J, HE Y, ZHANG X, et al. Journal of Materials Research and Technology\[J\], 2021,15:3005-3015. \[77\]KLEIN B P, IHLE A, KACHEL S R, et al. ACS Nano\[J\], 2022,16(8):11979-11987. \[78\]MATSUDA Y, DENG W Q, GODDARD W A. The Journal of Physical Chemistry C\[J\], 2010,114(41):17845-17850. \[79\]SUBEDI K N, NEPAL K, UGWUMADU C, et al. Applied Physics Letters\[J\], 2023,122(3):31903. \[80\]AHMED M, LI Y, LI E. ECS Journal of Solid State Science and Technology\[J\], 2018,7(11):M186-M190. \[81\]CAO H, TAN Z, FAN G, et al. Composites Part B: Engineering\[J\], 2020,191:107965. \[82\]QU W, ZHANG J, ZHANG S, et al. Composites Communications\[J\], 2022,32:101187. \[83\]CAO H, XIONG D, TAN Z, et al. Journal of Alloys and Compounds\[J\], 2019,771:228-237. \[84\]LIU D, ZHAO J, NING Y, et al. Composites Communications\[J\], 2021,25:100704. \[85\]YANG Y, CAO J, WEI N, et al. Molecules\[J\], 2019,24(6):1103. \[86\]LI X, TAN C, JIANG J, et al. Carbon\[J\], 2021,177:107-114. \[87\]ZHENG W, HUANG B, LI H, et al. ACS Applied Materials & Interfaces\[J\], 2018,10(41):35487-35494. \[88\]SHAMKHALICHENAR H, BUECHE C J, CHOI J. Biosensors\[J\], 2020,10(11):159. \[89\]ALI S, AHMAD F, YUSOFF P S M M, et al. Composites Part A: Applied Science and Manufacturing\[J\], 2021,144:106357. \[90\]LIU X, HUANG Y, WU L, et al. ACS Applied Nano Materials\[J\], 2023,6(4):2697-2707. \[91\]WEI C, YE N, HONG L, et al. ACS Applied Materials & Interfaces\[J\], 2021,13(18):21714-21723. \[92\]LI J, ZHANG P, HE H, et al. Materials & Design\[J\], 2020,187:108373. \[93\]WANG T, ZHAO R, ZHAN K, et al. Materials Science and Engineering: A\[J\], 2021,805:140574. \[94\]SONG G, WANG Q, SUN L, et al. Materials & Design\[J\], 2020,191:108629. \[95\]ZHAN K, LI F J, WANG W Z, et al. Journal of Alloys and Compounds\[J\], 2022,904:164085. \[96\]WANG W, LI F, XU Y, et al. Journal of Materials Research and Technology\[J\], 2022,19:1724-1739. \[97\]HSIEH C, LIU W. Carbon\[J\], 2017,118:1-7. \[98\]LEKAWARAUS A, GIZEWSKI T, PATMORE J, et al. Scripta Materialia\[J\], 2017,131:112-118. \[99\]KIM S J, SHIN D H, CHOI Y S, et al. ACS Nano\[J\], 2018,12(3):2803-2808. \[100\]XU L, JIAO X, SHI C, et al. ACS Nano\[J\], 2023,17(10):9245-9254. \[101\]SUBRAMANIAM C, YAMADA T, KOBASHI K, et al. Nature Communications\[J\], 2013,4(1):2202. \[102\]PAN C, GAUR A P S, LYNN M, et al. AIP Advances\[J\], 2022,12(1):15310. \[103\]KASHANI H, KIM C, RUDOLF C, et al. Advanced Materials\[J\], 2021,33(51):2104208. \[104\]KAPPAGANTULA K S, SMITH J A, NITTALA A K, et al. Journal of Alloys and Compounds\[J\], 2022,894:162477.

备注/Memo

备注/Memo:
收稿日期:2023-08-14修回日期:2023-10-04 基金项目:国家自然科学基金面上项目(52071230) 第一作者:蒋宇乾,男,1999年生,博士研究生 通讯作者:何春年,男,1981年生,教授,博士生导师, Email:cnhe08@tju.edu.cn
更新日期/Last Update: 2023-11-28