[1]油如月,王强,赵春玲,等.TNM变形钛铝合金研究进展[J].中国材料进展,2023,42(08):669-680.[doi:10.7502/j.issn.1674-3962.202107025]
 YOU Ruyue,WANG Qiang,ZHAO Chunling,et al.Progress of TNM Deformed TiAl Alloys[J].MATERIALS CHINA,2023,42(08):669-680.[doi:10.7502/j.issn.1674-3962.202107025]
点击复制

TNM变形钛铝合金研究进展()
分享到:

中国材料进展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期数:
2023年第08期
页码:
669-680
栏目:
出版日期:
2023-08-31

文章信息/Info

Title:
Progress of TNM Deformed TiAl Alloys
文章编号:
1674-3962(2023)08-0669-12
作者:
油如月1王强1赵春玲1杨刚2梁永锋2刘辰1季显坤1林均品2
1.中国航发湖南动力机械研究所,湖南 株洲 412002 2.北京科技大学 新金属材料国家重点实验室,北京 100083
Author(s):
YOU Ruyue1 WANG Qiang1 ZHAO Chunling1 YANG Gang2LIANG Yongfeng2 LIU Chen1 JI Xiankun1 LIN Junpin2
1. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China 2. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083, China
关键词:
TNM合金β凝固合金设计合金化
Keywords:
TNM alloy β solidification alloy design alloying
分类号:
TG146.23
DOI:
10.7502/j.issn.1674-3962.202107025
文献标志码:
A
摘要:
TiAl金属间化合物由于具有低密度、优异的高温强度以及高温蠕变抗力,在航空航天及汽车领域具有广阔的应用前景。但是,传统TiAl合金在热加工、成形等方面对设备有较为苛刻的要求,阻碍了其在工业应用中的进一步发展。为此,通过采用合金设计的手段,以提升整体加工性能为目标,成功设计并筛选得到了β凝固的名义成分为Ti-43.5Al-4Nb-1Mo-0.1B(原子百分数,%)的TNM合金,是目前较为理想的变形TiAl合金。该合金不仅具有优良的加工性能,并且兼顾强度、塑性、断裂韧性和抗蠕变性能等各个方面的性能目标。简要总结了TNM合金的设计理念、组织演变规律、微合金化进程、热处理工艺、室温高及温性能,以及实际应用等方面的研究进展,并对TNM合金未来的发展进行了展望。
Abstract:
TiAl intermetallic have broad application prospects in aerospace and automotive fields because of their low density, excellent high temperature strength and high temperature creep resistance. However, the traditional TiAl alloy has more stringent requirements for the equipment in hot processing,forming and other aspects, hinder its further development in industrial applications. In order to improve the overall workability, TNM alloy, β solidified, with nominal composition Ti-43.5Al-4Nb-1Mo-0.1B (at%) was successfully designed and selected by alloy design, which is an ideal deformed TiAl alloy at present. The alloy not only has excellent machining properties, but also takes into account the performance objectives of strength, plasticity,fracture toughness and creep resistance. The research progress of TNM alloy design concept, microstructure evolution law, microalloying process,heat treatment process, room temperature and high temperature performance and practical application are summarized briefly,andthe future development of alloys are prospected.

参考文献/References:

\[1\]杨锐. 金属学报\[J\], 2015, 51(2): 129-147. YANG R. Acta Metallurgica Sinica\[J\], 2015, 51(2): 129-147. \[2\]KIM Y W, DIMIDUK D M. The Journal of The Minerals, Metals and Materials Society\[J\], 1991, 43(8): 40-47. \[3\]PAUL J, APPEL F, WAGNER R. Acta Materialia\[J\], 1998, 46(4): 1075-1085. \[4\]ZHANG W, DEEVI S, CHEN G L. Intermetallics\[J\], 2002, 10(5): 403-406. \[5\]APPEL F, OEHERING M, WAGNERB R. Intermetallics\[J\], 2000, 8(9-11): 1283-1312. \[6\]林均品, 张来启, 宋西平, 等. 中国材料进展\[J\], 2010, 29(2):1-8. LIN J P, ZhANG L Q, SONG X P, et al. Materials China\[J\], 2010, 29(2): 1-8. \[7\]VOICE W E, HENERSON M, SHELTON E F J et al. Intermetallics\[J\], 2005,13(9): 959-964. \[8\]WEGMANN G, GRELIG R, SCHIMANSH Y F. Acta Mater\[J\], 2003, 51(3) :741-752. \[9\]ERDELY P, WERNER R, SCHWAIGHOFE R E, et al. Intermetallics\[J\], 2015, 57: 17-24. \[10\]PFLUMM R, DONCHEV A, MAYER S, et al. Intermetallics\[J\], 2014, 53: 45-55. \[11\]KIM Y W, KIM S L. Intermetallics\[J\], 2014, 53: 92-101. \[12\]NIU H, CHEN Y, ZHANG Y S, et al. Intermetallics\[J\], 2015, 59: 87-94. \[13\]沈正章. 高NbTiAl合金板材制备及组织性能研究\[D\]. 北京:北京科技大学, 2016. SHEN Z Z. Study on Preparation, Microstructure and Properties of High NbTiAl Alloy Sheet\[D\]. Beijing: University of Science and Technology Beijing, 2016. \[14\]WALLGRAM W, SCHMOLZER T, CHA L, et al. International Journal of Materials Research\[J\], 2009, 100(8): 1021-1030. \[15\]CLEMENS H, CHLADIL H, WALLGRM W, et al. Intermetallics\[J\], 2008, 16(6): 827-833. \[16\]APPEL F, LORENZ U, OEHRIG M, et al. Materials Science and Engineering: A\[J\], 1997, 233(1-2): 1-14. \[17\]JANSCHEK P. Materials Today Proceedings\[J\], 2015, 2: 92-97. \[18\]陈光. 航空动力\[J\], 2018, 4(6): 80-84. CHEN G. Aerospace Power\[J\],2018,4(6):80-84. \[19\]APPEL F, PAUL J, OEHRNG M, et al. Metallurgical and materials Transactions A\[J\], 2003, 34(10): 2149-2164. \[20\]CHEN G, XU X, TENG Z K, et al. Intermetallics\[J\], 2007, 15(5-6): 625-631. \[21\]CLEMENS H, WALLGRAM W, KREMME R S, et al. Advanced Engineering Materials\[J\], 2008, 10(8): 707-713. \[22\]ZHANG W, LIU Y, HUANG J S, et al. Rare metal materials and engineering\[J\], 2009,38(10), 1711-1717. \[23\]KESTLER H, CLEMENS H. Titanium and Titanium Alloys\[C\], Germany: WileyVch, 2003: 351. \[24\]KIM Y W. The Journal of The Minerals, Metals and Materials Society\[J\], 1994, 46(7): 30-39. \[25\]KREMMER S, CHLADIL H F, CLEMENS H, et al. Ti-2007 Science and Technology\[C\]. Tokyo: The Japan Institute of Technology, 2008: 989. \[26\]MAYER S, ERDELY P, FISCHER F D, et al. Advanced Engineering Materials\[J\], 2017, 19(4): \[27\]CHLADI H, CLEMENS H, OTTO A, et al. BHM Bergund Hüttenmnnische Monatshefte\[J\], 2006, 151(9): 356-361. \[28\]IMAYEV R, IMAYEV V, OEHRNG M, et al. Intermetallics\[J\], 2007, 15(4): 451-460. \[29\]MCCULLOUGH C, VALENCIA J, LEVI C G, et al. Acta Metallurgica\[J\], 1989, 37(5): 1321-1336. \[30\]ERDELY P, STARON P, MAAWARD E, et al. Materials & Design\[J\], 2017, 131: 286-296. \[31\]HUBER D, WERNER R , CLEMENS H, et al. Materials Characterization\[J\], 2015, 109: 116-121. \[32\]KELBASSA I. Qualification of Laser Metal Deposition of BLISKs out of Nickel and Titanium Base Alloys\[D\]. Aachen, Germany: RWTH Aachen University, 2006. \[33\]RITTINGHAUS S K, HECHT U, WERNE R V, et al. Intermetallics\[J\], 2018, 95: 94-101. \[34\]KASTENHUBER M, KLEIN T, RASHKOVA B, et al. Intermetallics\[J\], 2017, 91: 100-109. \[35\]VOISIN T, MONCHOUX J P, MAYER S, et al. Acta Materialia\[J\], 2014, 73: 07-115. \[36\]陈国清, 汤华平, 王琪, 等. 材料热处理学报\[J\], 2015, 36(12): 19-25. CHEN G Q, TANG H P, WANG Q, et al. Ansactions of Materialsand Heat Treatment\[J\], 2015, 36(12): 19-25. \[37\]SCHLOFFER M, IQBAL F, GABRISCH H, et al. Intermetallics\[J\], 2012, 22: 231-240. \[38\]TETSUI T, SHINDO K, KOBAYASHI S, et al. Scripta Materialia\[J\], 2002, 47(6): 399-403. \[39\]KONG F, CHEN Z, TIAN J, et al. Journal of Rare Earths\[J\], 2013, 21(2):163-166. \[40\]XU X, LIN J, WANG Y L, et al. Journal of Alloys and Compounds\[J\], 2006, 414(1-2): 131-136. \[41\]TETSUI T, SHINDO K, KAJI S, et al. Intermetallics\[J\], 2005, 13(9): 971-978. \[42\]KASTENHUBER M, KLEIN T, CLEMEN S H, et al. Intermetallics\[J\], 2018, 97: 27-33. \[43\]茶丽梅, 孙宗宗, 张勇, 等. 湖南大学学报 (自然科学版)\[J\], 2019, 46(6): 18-23. CHA L M, SUN Z Z, ZHANG Y, et al. Journal of Hunan University (Natural Science Edition)\[J\], 2019, 46(6): 18-23. \[44\]KLEIN T, USATEGUI L, RASHKOVA B, et al. Acta Materialia\[J\], 2017, 128: 440-450. \[45\]WANG J, NIEH T. Acta Materialia\[J\], 1998, 46: 1887-1901. \[46\]SCHWAIGHOFER E, CLEMENS H, MAYER S, et al. Intermetallics\[J\], 2014, 44: 128-140. \[47\]KASTENHUBER M, RASHKOVA B, CLEMENS H, et al. Intermetallics\[J\], 2017, 80: 1-9. \[48\]GTHER V, ROTHE C, WINTER S, et al. BHM Bergund Hüttenmnnische Monatshefte\[J\], 2010, 155(7) : 325-329. \[49\]CAO J. GUO Z C, SUN T L, et al. Scripta Materialia\[J\],2023,224:111512. \[50\]GU X, CAO F Y, ZHAO G Q, et al. Scripta Materialia\[J\],2020,192:50-60. \[51\]KLEIN T, SCHACHERMAYER M, MENDEZMARTIN F, et al. Acta Materialia\[J\], 2015, 94: 205-213. \[52\]WORTH B D, JONES J W, ALLISON J E. Metallurgical and Materials Transactions A\[J\], 1995, 26(11): 2961-2972. \[53\]TSUYAMA S, MITAO S, MINAKAWA K. Intermetallics\[J\], 1992, 153(1-2): 451-456. \[54\]WANG L, GABRISCH H, LORENZ U. Intermetallics\[J\], 2015, 66: 111-119. \[55\]HILLERT M. Acta Metallurgica\[J\], 1988, 36(12): 3177-3181. \[56\]KLEIN T, RASHKOVA B, HOLEC D, et al. Acta Materialia\[J\], 2016, 110: 236-245. \[57\]KASTENHUBER M, RASHKOVA B, CLEMENS H, et al. Intermetallics\[J\], 2015, 63: 19-26. \[58\]YAMAMOTO R, MIZOGUCHI K, WEGMANN G, et al. Intermetallics\[J\], 1998, 6(7-8): 699-702. \[59\]PARK H, NAM S, KIM N J, et al. Scripta Materialia\[J\], 1999, 41(11):1197-1203. \[60\]SCHWAIGHOFER E, CLEMENS H, LINDEMAN N J, et al. Materials Science and Engineering: A\[J\], 2014, 614: 297-310. \[61\]SASTRY S, MESCHTER P, J. ONEAL E. Materials Science and Engineering: A\[J\], 1984, 15(7): 1451-1463. \[62\]AULT G M, BURTE H. Technical Applications for OxideDispersion Strengthened Materials\[M\]. New York, US: Government Publishing, 1966: 39965. \[63\]NGANBE M, HEILMAIER M. Materials Science and Engineering: A\[J\], 2004, 387: 609-612. \[64\]LIU H, YI D, WANG W, et al. Transactions of Nonferrous Metals Society of China\[J\], 2007, 17(6): 1212-1219. \[65\]YIN S B, HUANG B Y, YIN Z M. Materials Science and Engineering: A\[J\], 2000, 280(1): 204-207. \[66\]HADI M, SHAFYEI A, MERATIAN M. Materials Science and Engineering: A\[J\], 2015, 624: 1-8. \[67\]ARATA J, KUMAR K, CURTIN W A, et al. Materials Science and Engineering: A\[J\], 2002, 329: 532-537. \[68\]MATTHW D S, TAMIRISAKANDALA S A, LEWANDOWSKI J J, et al. International Journal of Fatigue\[J\], 2018, 111: 54-69. \[69\]LEITNER T, SCHLOFFER M, MAYER S. Intermetallics\[J\], 2014, 53: 1-9. \[70\]TANG B, ZHU B, BI W, et al. Metals\[J\], 2019, 9(10): 1043. \[71\]SALLOT P, MONCHOUX J P, JOULI S, et al. Intermetallics\[J\], 2020, 119: 106729. \[72\]FERGUS J W. Materials Science and Engineering: A\[J\], 2002, 338(1-2): 108-125. \[73\]LASKA N, BRAUN R, KNITTEL S. Surface and Coatings Technology\[J\], 2018, 349: 347-356. \[74\]陈玉勇, 张树志, 孔凡涛,等. 稀有金属\[J\], 2012(1):154-160. CHEN Y Y, ZHANG S Z, KONG F T, et al. Rare Metals\[J\], 2012(1):154-160. \[75\]罗媛媛,杨海瑛,尹雁飞,等.稀有金属材料与工程\[J\],2022,51(10):3716-3721. LUO Y Y, YANG H Y, YIN F Y, et al. Rare Metal Materials and Engineering\[J\], 2022,51(10):3716-3721.

备注/Memo

备注/Memo:
收稿日期:2021-07-15修回日期:2021-12-06 基金项目:中央高校基本科研业务费专项资金资助项目(FRF-MP-20-44) 第一作者:油如月,女,1993年生,工程师, Email:youruyuehit@163.com
更新日期/Last Update: 2023-07-28